Skip to content
This repository was archived by the owner on Jul 7, 2023. It is now read-only.

Replace deprecated assert calls #1411

Merged
merged 1 commit into from
Jan 30, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 20 additions & 20 deletions tensor2tensor/models/revnet_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,94 +24,94 @@ class RevnetTest(tf.test.TestCase):
def testH(self):
rev_block_input = tf.random_uniform([1, 299, 299, 3])
rev_block_output = revnet.downsample_bottleneck(rev_block_input, 256)
self.assertEquals(rev_block_output.get_shape().as_list(),
self.assertEqual(rev_block_output.get_shape().as_list(),
[1, 299, 299, 256])

def testHStride(self):
rev_block_input = tf.random_uniform([2, 299, 299, 256])
rev_block_output = revnet.downsample_bottleneck(
rev_block_input, 512, stride=2, scope='HStride')
self.assertEquals(rev_block_output.get_shape().as_list(),
self.assertEqual(rev_block_output.get_shape().as_list(),
[2, 150, 150, 512])

def testInit(self):
images = tf.random_uniform([1, 299, 299, 3])
x1, x2 = revnet.init(images, 32)
self.assertEquals(x1.get_shape().as_list(), [1, 74, 74, 16])
self.assertEquals(x2.get_shape().as_list(), [1, 74, 74, 16])
self.assertEqual(x1.get_shape().as_list(), [1, 74, 74, 16])
self.assertEqual(x2.get_shape().as_list(), [1, 74, 74, 16])

def testInit3D(self):
images = tf.random_uniform([1, 299, 299, 299, 3])
x1, x2 = revnet.init(images, 32, dim='3d', scope='init3d')
self.assertEquals(x1.get_shape().as_list(), [1, 74, 74, 74, 16])
self.assertEquals(x2.get_shape().as_list(), [1, 74, 74, 74, 16])
self.assertEqual(x1.get_shape().as_list(), [1, 74, 74, 74, 16])
self.assertEqual(x2.get_shape().as_list(), [1, 74, 74, 74, 16])

def testUnit1(self):
x1 = tf.random_uniform([4, 74, 74, 256])
x2 = tf.random_uniform([4, 74, 74, 256])
x1, x2 = revnet.unit(x1, x2, block_num=1, depth=64,
first_batch_norm=True, num_layers=1)
self.assertEquals(x1.get_shape().as_list(), [4, 74, 74, 256])
self.assertEquals(x2.get_shape().as_list(), [4, 74, 74, 256])
self.assertEqual(x1.get_shape().as_list(), [4, 74, 74, 256])
self.assertEqual(x2.get_shape().as_list(), [4, 74, 74, 256])

def testUnit2(self):
x1 = tf.random_uniform([4, 74, 74, 256])
x2 = tf.random_uniform([4, 74, 74, 256])
x1, x2 = revnet.unit(x1, x2, block_num=2, depth=128,
num_layers=1, stride=2)
self.assertEquals(x1.get_shape().as_list(), [4, 37, 37, 512])
self.assertEquals(x2.get_shape().as_list(), [4, 37, 37, 512])
self.assertEqual(x1.get_shape().as_list(), [4, 37, 37, 512])
self.assertEqual(x2.get_shape().as_list(), [4, 37, 37, 512])

def testUnit3(self):
x1 = tf.random_uniform([1, 37, 37, 512])
x2 = tf.random_uniform([1, 37, 37, 512])
x1, x2 = revnet.unit(x1, x2, block_num=3, depth=256,
num_layers=10, stride=2)
self.assertEquals(x1.get_shape().as_list(), [1, 19, 19, 1024])
self.assertEquals(x2.get_shape().as_list(), [1, 19, 19, 1024])
self.assertEqual(x1.get_shape().as_list(), [1, 19, 19, 1024])
self.assertEqual(x2.get_shape().as_list(), [1, 19, 19, 1024])

def testUnit4(self):
x1 = tf.random_uniform([1, 19, 19, 1024])
x2 = tf.random_uniform([1, 19, 19, 1024])
x1, x2 = revnet.unit(x1, x2, block_num=4, depth=416,
num_layers=1, stride=2)
self.assertEquals(x1.get_shape().as_list(), [1, 10, 10, 1664])
self.assertEquals(x2.get_shape().as_list(), [1, 10, 10, 1664])
self.assertEqual(x1.get_shape().as_list(), [1, 10, 10, 1664])
self.assertEqual(x2.get_shape().as_list(), [1, 10, 10, 1664])

def testUnit3D(self):
x1 = tf.random_uniform([4, 74, 74, 74, 256])
x2 = tf.random_uniform([4, 74, 74, 74, 256])
x1, x2 = revnet.unit(x1, x2, block_num=5, depth=128,
num_layers=1, dim='3d', stride=2)
self.assertEquals(x1.get_shape().as_list(), [4, 37, 37, 37, 512])
self.assertEquals(x2.get_shape().as_list(), [4, 37, 37, 37, 512])
self.assertEqual(x1.get_shape().as_list(), [4, 37, 37, 37, 512])
self.assertEqual(x2.get_shape().as_list(), [4, 37, 37, 37, 512])

def testFinalBlock(self):
x1 = tf.random_uniform([5, 10, 10, 1024])
x2 = tf.random_uniform([5, 10, 10, 1024])
logits = revnet.final_block(x1, x2)
self.assertEquals(logits.shape, [5, 1, 1, 2048])
self.assertEqual(logits.shape, [5, 1, 1, 2048])

def testFinalBlock3D(self):
x1 = tf.random_uniform([5, 10, 10, 10, 1024])
x2 = tf.random_uniform([5, 10, 10, 10, 1024])
logits = revnet.final_block(x1, x2, dim='3d', scope='FinalBlock3D')
self.assertEquals(logits.shape, [5, 1, 1, 1, 2048])
self.assertEqual(logits.shape, [5, 1, 1, 1, 2048])

def testEndToEnd(self):
images = tf.random_uniform([1, 299, 299, 3])
hparams = revnet.revnet_base()
hparams.mode = tf.estimator.ModeKeys.TRAIN
logits = revnet.revnet(images, hparams)
self.assertEquals(logits.shape, [1, 1, 1, 3328])
self.assertEqual(logits.shape, [1, 1, 1, 3328])

def testEndToEnd3D(self):
images = tf.random_uniform([1, 299, 299, 299, 3])
hparams = revnet.revnet_base()
hparams.dim = '3d'
hparams.mode = tf.estimator.ModeKeys.TRAIN
logits = revnet.revnet(images, hparams)
self.assertEquals(logits.shape, [1, 1, 1, 1, 3328])
self.assertEqual(logits.shape, [1, 1, 1, 1, 3328])

if __name__ == '__main__':
tf.test.main()
2 changes: 1 addition & 1 deletion tensor2tensor/rl/gym_utils_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def test_making_timewrapped_env(self):
env = gym_utils.make_gym_env("CartPole-v0", rl_env_max_episode_steps=1000)
self.assertTrue(isinstance(env, gym.Env))
self.assertTrue(isinstance(env, gym.wrappers.TimeLimit))
self.assertEquals(1000, env._max_episode_steps)
self.assertEqual(1000, env._max_episode_steps)

# Make a time-wrapped environment with unlimited limit.
def test_unlimited_env(self):
Expand Down
2 changes: 1 addition & 1 deletion tensor2tensor/utils/t2t_model_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def testSummarizeLosses(self):
"extra": tf.random_normal([])}
outputs = model._summarize_losses(losses)
self.assertIsNone(outputs, None)
self.assertEquals(
self.assertEqual(
len(tf.get_collection(tf.GraphKeys.SUMMARIES, scope="losses")),
len(losses))

Expand Down