Description
Prerequisites
Please answer the following questions for yourself before submitting an issue.
- I am using the latest TensorFlow Model Garden release and TensorFlow 2. (latest and nightly suffer from the same issue)
- I am reporting the issue to the correct repository. (Model Garden official or research directory)
- I checked to make sure that this issue has not been filed already.
1. The entire URL of the file you are using
https://github.com/tensorflow/models/tree/master/official/...
2. Describe the bug
I trained a model, and saved it using
import tf_keras
tf_keras.models.save_model('/path/to/model')
On loading, tensorflow_models
must be imported before tf_keras
for model loading to run without error
>>> import tensorflow_models as tfm
>>> import tf_keras
>>> m = tf_keras.models.load_model('/path/to/model')
>>>
3. Steps to reproduce
>>> import tf_keras
>>> m = tf_keras.models.load_model('/data/bincaptcha4/generated/bincaptcha4.1/train/model')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/trainer/.local/lib/python3.11/site-packages/tf_keras/src/saving/saving_api.py", line 301, in load_model
return legacy_sm_saving_lib.load_model(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/trainer/.local/lib/python3.11/site-packages/tf_keras/src/utils/traceback_utils.py", line 70, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/home/trainer/.local/lib/python3.11/site-packages/tf_keras/src/saving/legacy/saved_model/load.py", line 564, in _revive_graph_network
inputs=[], outputs=[], name=config["name"]
~~~~~~^^^^^^^^
KeyError: 'name
4. Expected behavior
tensorflow_models
may not need to be imported for model loading to work, or the import order between tensorflow_models
and tf_keras
does not matter.
5. Additional context
Include any logs that would be helpful to diagnose the problem.
6. System information
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 22.04
- Mobile device name if the issue happens on a mobile device:
- TensorFlow installed from (source or binary): https://hub.docker.com/layers/tensorflow/tensorflow/nightly-gpu-jupyter/images/sha256-615c4ac8f5dc9aa005afedc7ac5b44a6f1198a2cbd6dc5ba700b13aed40dd2af,
pip install tf-models-nightly
- TensorFlow version (use command below):2.20.0-dev
- Python version: 3.11.12
- Bazel version (if compiling from source):
- GCC/Compiler version (if compiling from source):
- CUDA/cuDNN version: release 12.3, V12.3.107
- GPU model and memory: V100 32GB
Collect system information using our environment capture script.
https://github.com/tensorflow/tensorflow/tree/master/tools/tf_env_collect.sh
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
== check pips ======================================================
numpy 1.26.4
proto-plus 1.26.1
protobuf 5.29.4
tensorflow-datasets 4.9.8
tensorflow-metadata 1.17.1
tensorflow-model-optimization 0.8.0
tensorflow-text-nightly 2.20.0.dev20250316
tf_nightly 2.20.0.dev20250423
== check for virtualenv ============================================
Not running inside a virtual environment.
== tensorflow import ===============================================
2025-05-02 15:27:46.818719: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1746199674.192845 257 gpu_device.cc:2018] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 31132 MB memory: -> device: 0, name: Tesla V100-SXM2-32GB, pci bus id: 0000:1b:00.0, compute capability: 7.0
tf.version.VERSION = 2.20.0-dev20250423
tf.version.GIT_VERSION = v1.12.1-125261-g5c7cbdd5516
tf.version.COMPILER_VERSION = Ubuntu Clang 18.1.8 (++20240731024944+3b5b5c1ec4a3-1~exp1~20240731145000.144)
Sanity check: <tf.Tensor: shape=(1,), dtype=int32, numpy=array([1], dtype=int32)>
libcudnn not found
== env =============================================================
LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64
DYLD_LIBRARY_PATH is unset
== nvidia-smi ======================================================
Fri May 2 15:28:05 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 Tesla V100-SXM2-32GB Off | 00000000:1B:00.0 Off | 0 |
| N/A 29C P0 43W / 300W | 6MiB / 32768MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
== cuda libs =======================================================
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart_static.a
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.101
== tensorflow installation =========================================
tensorflow not found
== tf_nightly installation =========================================
Name: tf_nightly
Version: 2.20.0.dev20250423
Summary: TensorFlow is an open source machine learning framework for everyone.
Home-page: https://www.tensorflow.org/
Author-email: packages@tensorflow.org
License: Apache 2.0
Location: /usr/local/lib/python3.11/dist-packages
Required-by: tf-models-nightly, tf_keras-nightly
== python version ==================================================
(major, minor, micro, releaselevel, serial)
(3, 11, 12, 'final', 0)
== bazel version ===================================================
You can also obtain the TensorFlow version with:
-
TensorFlow 1.0
python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
-
TensorFlow 2.0
python -c "import tensorflow as tf; print(tf.version.GIT_VERSION, tf.version.VERSION)"
v1.12.1-125261-g5c7cbdd5516 2.20.0-dev20250423