Skip to content

super_serial: automate saving and restoring tfrecords #1918

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
177 changes: 177 additions & 0 deletions tensorflow_addons/super_serial/super_serial.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
"""Easily save tf.data.Datasets as tfrecord files, and restore tfrecords as Datasets.

The goal of this module is to create a SIMPLE api to tfrecords that can be used without
learning all of the underlying mechanics.

Users only need to deal with 2 functions:
save(dataset)
dataset = load(tfrecord, header)

To make this work, we create a .header file for each tfrecord which encodes metadata
needed to reconstruct the original dataset.

Saving must be done in eager mode, but loading is compatible with both eager and
graph execution modes.

GOTCHAS:
- This module is only compatible with "dictionary-style" datasets {key: val, key2:val2,..., keyN: valN}.
- The restored dataset will have the TFRecord dtypes {float32, int64, string} instead of the original
tensor dtypes. This is always the case with TFRecord datasets, whether you use this module or not.
The original dtypes are stored in the headers if you want to restore them after loading."""
import functools
import os
import tempfile

import numpy as np
import yaml
import tensorflow as tf


# The three encoding functions.
def _bytes_feature(value):
"""value: list"""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))

def _float_feature(value):
"""value: list"""
return tf.train.Feature(float_list=tf.train.FloatList(value=value))

def _int64_feature(value):
"""value: list"""
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))

#TODO use base_type() to ensure consistent conversion.
def np_value_to_feature(value):
"""Maps dataset values to tf Features.
Only numpy types are supported since Datasets only contain tensors.
Each datatype should only have one way of being serialized."""
if isinstance(value, np.ndarray):
# feature = _bytes_feature(value.tostring())
if np.issubdtype(value.dtype, np.integer):
feature = _int64_feature(value.flatten())
elif np.issubdtype(value.dtype, np.float):
feature = _float_feature(value.flatten())
elif np.issubdtype(value.dtype, np.bool):
feature = _int64_feature(value.flatten())
else:
raise TypeError(f"value dtype: {value.dtype} is not recognized.")
elif isinstance(value, bytes):
feature = _bytes_feature([value])
elif np.issubdtype(type(value), np.integer):
feature = _int64_feature([value])
elif np.issubdtype(type(value), np.float):
feature = _float_feature([value])

else:
raise TypeError(f"value type: {type(value)} is not recognized. value must be a valid Numpy object.")

return feature

def base_type(dtype):
"""Returns the TFRecords allowed type corresponding to dtype."""
int_types = [tf.int8, tf.int16, tf.int32, tf.int64,
tf.uint8, tf.uint16, tf.uint32, tf.uint64,
tf.qint8, tf.qint16, tf.qint32,
tf.bool]
float_types = [tf.float16, tf.float32, tf.float64]
byte_types = [tf.string, bytes]

if dtype in int_types:
new_dtype = tf.int64
elif dtype in float_types:
new_dtype = tf.float32
elif dtype in byte_types:
new_dtype = tf.string
else:
raise ValueError(f"dtype {dtype} is not a recognized/supported type!")

return new_dtype

def build_header(dataset):
"""Build header dictionary of metadata for the tensors in the dataset. This will be used when loading
the tfrecords file to reconstruct the original tensors from the raw data. Shape is stored as an array
and dtype is stored as an enumerated value (defined by tensorflow)."""
header = {}
for key in dataset.element_spec.keys():
header[key] = {"shape": list(dataset.element_spec[key].shape), "dtype": dataset.element_spec[key].dtype.as_datatype_enum}

return header

def build_feature_desc(header):
"""Build feature_desc dictionary for the tensors in the dataset. This will be used to reconstruct Examples
from the tfrecords file.

Assumes FixedLenFeatures.
If you got VarLenFeatures I feel bad for you son,
I got 115 problems but a VarLenFeature ain't one."""
feature_desc = {}
for key, params in header.items():
feature_desc[key] = tf.io.FixedLenFeature(shape=params["shape"], dtype=base_type(int(params["dtype"])))

return feature_desc

def dataset_to_examples(ds):
"""Converts a dataset to a dataset of tf.train.Example strings. Each Example is a single observation.
WARNING: Only compatible with "dictionary-style" datasets {key: val, key2:val2,..., keyN, valN}.
WARNING: Must run in eager mode!"""
# TODO handle tuples and flat datasets as well.
for x in ds:
# Each individual tensor is converted to a known serializable type.
features = {key: np_value_to_feature(value.numpy()) for key, value in x.items()}
# All features are then packaged into a single Example object.
example = tf.train.Example(features=tf.train.Features(feature=features))

yield example.SerializeToString()

def save(dataset, tfrecord_path, header_path):
"""Saves a flat dataset as a tfrecord file, and builds a header file for reloading as dataset."""
# Header
header = build_header(dataset)
header_file = open(header_path, "w")
yaml.dump(header, stream=header_file)

# Dataset
ds_examples = tf.data.Dataset.from_generator(lambda: dataset_to_examples(dataset), output_types=tf.string)
writer = tf.data.experimental.TFRecordWriter(tfrecord_path)
writer.write(ds_examples)

# TODO-DECIDE is this yaml loader safe?
def load(tfrecord_path, header_path):
"""Uses header file to predict the shape and dtypes of tensors for tf.data."""
header_file = open(header_path)
header = yaml.load(header_file, Loader=yaml.FullLoader)

feature_desc = build_feature_desc(header)
parse_func = functools.partial(tf.io.parse_single_example, features=feature_desc)
dataset = tf.data.TFRecordDataset(tfrecord_path).map(parse_func)

return dataset

def test():
"""Test super serial saving and loading.
NOTE- test will only work in eager mode due to list() dataset cast."""
savefolder = tempfile.TemporaryDirectory()
savepath = os.path.join(savefolder.name, "temp_dataset")
tfrecord_path = savepath + ".tfrecord"
header_path = savepath + ".header"

# Data
x = np.linspace(1, 3000, num=3000).reshape(10, 10, 10, 3)
y = np.linspace(1, 10, num=10).astype(int)
ds = tf.data.Dataset.from_tensor_slices({"image": x, "label": y})

# Run
save(ds, tfrecord_path=tfrecord_path, header_path=header_path)
new_ds = load(tfrecord_path=tfrecord_path, header_path=header_path)

# Test that values were saved and restored
assert list(ds)[0]["image"].numpy()[0, 0, 0] == list(new_ds)[0]["image"].numpy()[0, 0, 0]
assert list(ds)[0]["label"] != list(new_ds)[0]["label"]

# Clean up- folder will disappear on crash as well.
savefolder.cleanup()


if __name__ == "__main__":
test()
print("Test passed.")