-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
348 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,343 @@ | ||
source("packages.R") | ||
|
||
err.dt <- data.table( | ||
csv=Sys.glob("figure-sequence-cv-data/*.csv") | ||
)[, data.table::fread( | ||
csv, | ||
colClasses=list(character=5) | ||
), by=csv] | ||
err.dt[model.name=="LOPART" & set=="train", table(errors)] | ||
err.dt[model.name=="LOPART" & set=="train" & 0<errors, .( | ||
csv, test.fold, set, penalty, fp, fn)] | ||
|
||
fn.dt <- err.dt[set=="test", .( | ||
fn=possible.fn[1] | ||
), by=.(sequenceID, test.fold)] | ||
|
||
SegAnnot.compare <- err.dt[ | ||
set=="test" & model.name=="LOPART", | ||
.SD[which.min(errors)], | ||
by=.(sequenceID, test.fold)] | ||
## segannot always has FN = possible.fn and FP=0, so how often are we | ||
## better on one or both axes? | ||
SegAnnot.compare[, fewer.FN := possible.fn-fn] | ||
SegAnnot.compare[, table(fp, fewer.FN)] | ||
SegAnnot.compare[, table(fewer.FN>fp)] | ||
|
||
SegAnnot.compare.counts <- SegAnnot.compare[, .( | ||
test.sets=.N | ||
), by=.(fewer.FN, fp)] | ||
SegAnnot.compare.counts[, .( | ||
test.sets=sum(test.sets) | ||
), by=.(same = fp==fewer.FN)] | ||
my.title <- ggtitle("Best penalty") | ||
scale.fill <- scale_fill_gradient( | ||
"log10(seqs)", | ||
low="white", | ||
high="violet") | ||
gg <- ggplot()+ | ||
##ggtitle("LOPART is more accurate than SegAnnot")+ | ||
my.title+ | ||
geom_abline(aes( | ||
slope=slope, intercept=intercept, color=test.errors), | ||
data=data.table(slope=1, intercept=0, test.errors="equal"))+ | ||
scale_color_manual(values=c(equal="grey"), guide=FALSE)+ | ||
geom_tile(aes( | ||
fewer.FN, fp, fill=log10(test.sets)), | ||
alpha=0.8, | ||
data=SegAnnot.compare.counts)+ | ||
geom_text(aes( | ||
fewer.FN, fp, label=test.sets), | ||
data=SegAnnot.compare.counts)+ | ||
scale.fill+ | ||
coord_equal()+ | ||
theme_bw()+ | ||
scale_x_continuous( | ||
"Number of LOPART true positive labels | ||
(SegAnnot always has true positives=0)")+ | ||
scale_y_continuous( | ||
"Number of LOPART | ||
false positive labels | ||
(SegAnnot always has | ||
false positives=0)") | ||
pdf("figure-sequence-cv-SegAnnot.pdf", width=5, height=2.3) | ||
print(gg) | ||
dev.off() | ||
|
||
total.dt <- dcast( | ||
data.table(data.frame(err.dt)), | ||
sequenceID + test.fold + model.name + penalty ~ set, | ||
value.var="errors") | ||
total.dt[, train.test := test+train] | ||
total.min <- total.dt[, .SD[ | ||
which.min(train.test)], by=.(sequenceID, test.fold, model.name)] | ||
total.min.wide <- dcast( | ||
total.min, | ||
sequenceID + test.fold ~ model.name, | ||
value.var=c("test", "train", "train.test")) | ||
total.min.wide[, diff := train.test_OPART-train.test_LOPART] | ||
total.min.wide[, .( | ||
prob.folds=.N | ||
), keyby=.(diff)] | ||
total.min.wide[diff<0] | ||
total.min.wide[, train.test.diff := train.test_OPART - train.test_LOPART] | ||
mytab <- function(dt, col.name){ | ||
errors <- dt[, .( | ||
count=.N, | ||
percent=100*.N/nrow(dt) | ||
), by=col.name] | ||
is.zero <- errors[[col.name]] == 0 | ||
nonzero <- errors[!is.zero] | ||
sum.wide <- data.table( | ||
sum.count=sum(errors$count), | ||
zero.count=errors$count[is.zero], | ||
nonzero.count=sum(nonzero$count), | ||
nonzero.min=min(nonzero[[col.name]]), | ||
nonzero.max=max(nonzero[[col.name]])) | ||
sum.tall <- melt(sum.wide, measure.vars=names(sum.wide)) | ||
sum.tall[grepl("count", variable), percent := 100*value/nrow(dt) ] | ||
list( | ||
errors=errors, | ||
summary=sum.tall) | ||
} | ||
mytab(total.min.wide, "train_OPART") | ||
|
||
total.min.wide[, test.diff := test_OPART-test_LOPART] | ||
mytab(total.min.wide, "test.diff") | ||
|
||
train.test.counts <- total.min.wide[, .( | ||
splits=.N | ||
), by=.(train_OPART, test.diff)] | ||
gg <- ggplot()+ | ||
##ggtitle("LOPART is more accurate\nthan OPART")+ | ||
my.title+ | ||
geom_hline(yintercept=0, color="grey")+ | ||
geom_vline(xintercept=0, color="grey")+ | ||
geom_tile(aes( | ||
train_OPART, test.diff, fill=log10(splits)), | ||
alpha=0.8, | ||
data=train.test.counts)+ | ||
geom_text(aes( | ||
train_OPART, test.diff, label=splits), | ||
data=train.test.counts)+ | ||
scale.fill+ | ||
coord_equal()+ | ||
theme_bw()+ | ||
scale_x_continuous( | ||
"OPART train label errors | ||
(LOPART is always=0)")+ | ||
scale_y_continuous( | ||
"Test label error difference | ||
(OPART-LOPART)") | ||
pdf("figure-sequence-cv-OPART.pdf", width=3, height=2.3) | ||
print(gg) | ||
dev.off() | ||
|
||
err.dt[, log.penalty := log(penalty)] | ||
err.dt[, min.log.lambda := log.penalty + c( | ||
-Inf, -diff(log.penalty)/2 | ||
), by=.( | ||
model.name, test.fold, set, sequenceID)] | ||
err.dt[, max.log.lambda := c( | ||
min.log.lambda[-1], Inf | ||
), by=.( | ||
model.name, test.fold, set, sequenceID)] | ||
err.test <- err.dt[set=="test"] | ||
|
||
err.train <- err.dt[set=="train" & model.name=="OPART"] | ||
|
||
feature.dt <- data.table::fread( | ||
"data-for-LOPART-signals.csv.gz" | ||
)[, .( | ||
log.log.data=log(log(.N)) | ||
), by=sequenceID] | ||
feature.mat <- feature.dt[, matrix( | ||
log.log.data, | ||
ncol=1, | ||
dimnames=list(sequenceID=sequenceID, feature="log.log.data"))] | ||
|
||
pred.dt <- err.train[, { | ||
best.penalty <- .SD[, .( | ||
train.errors=sum(errors) | ||
), by=penalty][which.min(train.errors)] | ||
target.dt <- penaltyLearning::targetIntervals(.SD, "sequenceID") | ||
target.mat <- target.dt[ | ||
rownames(feature.mat), | ||
cbind(min.log.lambda, max.log.lambda), | ||
on="sequenceID"] | ||
keep <- -Inf < target.mat[, 1] | target.mat[,2] < Inf | ||
fit <- penaltyLearning::IntervalRegressionUnregularized( | ||
feature.mat[keep, , drop=FALSE], target.mat[keep, ]) | ||
print(fit) | ||
rbind( | ||
data.table( | ||
sequenceID=rownames(feature.mat), | ||
Penalty="constant", | ||
Parameters=1, | ||
pred.log.lambda=log(best.penalty$penalty)), | ||
data.table( | ||
sequenceID=rownames(feature.mat), | ||
Penalty="BIC", | ||
Parameters=0, | ||
pred.log.lambda=as.numeric(feature.mat)), | ||
data.table( | ||
sequenceID=rownames(feature.mat), | ||
Penalty="linear", | ||
Parameters=2, | ||
pred.log.lambda=as.numeric(fit$predict(feature.mat)))) | ||
}, by=test.fold] | ||
|
||
auc.dt <- err.test[, { | ||
select.dt <- data.table(test.fold) | ||
pred.fold <- pred.dt[select.dt, on="test.fold"] | ||
model.dt <- .SD[order(sequenceID, min.log.lambda)] | ||
pred.fold[, { | ||
roc.list <- penaltyLearning::ROChange( | ||
model.dt, | ||
.SD[select.dt, on="test.fold"], | ||
problem.vars="sequenceID") | ||
with(roc.list, data.table( | ||
roc=list(roc), auc, | ||
thresholds[threshold=="predicted"])) | ||
}, by=.(Penalty, Parameters)] | ||
}, by=.(test.fold, model.name)] | ||
|
||
roc.dt <- auc.dt[, data.table( | ||
roc[[1]] | ||
), by=.(test.fold, model.name, Penalty, Parameters)] | ||
possible.dt <- unique(auc.dt[, .( | ||
test.fold, possible.fp, possible.fn)]) | ||
pred.point.dt <- rbind( | ||
auc.dt[model.name=="LOPART", data.table( | ||
FPR=0, TPR=0, fp=0, tp=0, auc=NA, labels, | ||
model.name="SegAnnot", test.fold, Penalty, Parameters | ||
)], | ||
auc.dt[, .( | ||
FPR, TPR, fp, tp, auc, labels, | ||
model.name, test.fold, Penalty, Parameters | ||
)] | ||
)[possible.dt, on=.(test.fold)] | ||
algo.colors <- c( | ||
OPART="#0077CC", | ||
LOPART="black", | ||
SegAnnot="#22CC22") | ||
gg <- ggplot()+ | ||
theme_bw()+ | ||
scale_color_manual(values=algo.colors)+ | ||
scale_size_manual(values=c( | ||
LOPART=1.5, | ||
OPART=1))+ | ||
directlabels::geom_dl(aes( | ||
FPR, TPR, | ||
color=model.name, | ||
label=paste0(model.name, ifelse(is.na(auc), "", sprintf( | ||
" AUC=%.3f", auc | ||
)))), | ||
method=list( | ||
cex=0.8, | ||
directlabels::polygon.method( | ||
"right", | ||
offset.cm=0.5, | ||
padding.cm=0.05)), | ||
data=pred.point.dt)+ | ||
geom_path(aes( | ||
FPR, TPR, | ||
color=model.name, | ||
size=model.name, | ||
group=paste(model.name, test.fold)), | ||
data=roc.dt)+ | ||
geom_point(aes( | ||
FPR, TPR, | ||
color=model.name), | ||
size=3, | ||
shape=21, | ||
fill="white", | ||
data=pred.point.dt)+ | ||
theme( | ||
panel.spacing=grid::unit(0, "lines"), | ||
legend.position="none" | ||
)+ | ||
facet_grid(test.fold ~ Penalty + Parameters, labeller=label_both)+ | ||
coord_equal()+ | ||
scale_x_continuous( | ||
"False Positive Rate (test set labels)", | ||
breaks=c(0, 0.5, 1), | ||
labels=c("0", "0.5", "1"))+ | ||
scale_y_continuous( | ||
"True Positive Rate (test set labels)", | ||
breaks=c(0, 0.5, 1), | ||
labels=c("0", "0.5", "1")) | ||
##print(gg) | ||
expansion <- 2.5 | ||
pdf("figure-sequence-cv-roc.pdf", width=3*expansion, height=2*expansion) | ||
print(gg) | ||
dev.off() | ||
|
||
auc.wide <- dcast( | ||
auc.dt, | ||
test.fold + Parameters + Penalty ~ model.name, | ||
value.var = "auc") | ||
auc.wide[, diff := OPART-LOPART] | ||
auc.wide | ||
|
||
pred.point.dt[, fn := possible.fn-tp ] | ||
pred.point.dt[, errors := fn + fp ] | ||
pred.point.dt[, percent.error := 100*errors/labels] | ||
pred.point.dt[, Penalty.Params := paste0(Penalty, ".", Parameters)] | ||
gg <- ggplot()+ | ||
theme_bw()+ | ||
theme(panel.spacing=grid::unit(0, "lines"))+ | ||
geom_point(aes( | ||
percent.error, Penalty.Params, color=model.name), | ||
data=pred.point.dt)+ | ||
facet_grid(. ~ test.fold, labeller=label_both)+ | ||
scale_color_manual(values=algo.colors) | ||
|
||
pred.point.dt[, percent.accuracy := 100-percent.error] | ||
pred.point.vars <- melt( | ||
pred.point.dt, | ||
measure.vars=c("percent.accuracy", "auc")) | ||
ggplot()+ | ||
theme_bw()+ | ||
theme(panel.spacing=grid::unit(0, "lines"))+ | ||
geom_point(aes( | ||
value, Penalty.Params, color=model.name), | ||
data=pred.point.vars)+ | ||
facet_grid(test.fold ~ variable, labeller=label_both, scales="free")+ | ||
scale_color_manual(values=algo.colors) | ||
|
||
ggplot()+ | ||
theme_bw()+ | ||
theme(panel.spacing=grid::unit(0, "lines"))+ | ||
geom_point(aes( | ||
value, Penalty.Params, color=model.name), | ||
data=pred.point.vars)+ | ||
facet_grid(. ~ variable + test.fold, labeller=label_both, scales="free")+ | ||
scale_color_manual(values=algo.colors) | ||
|
||
pred.point.wide <- dcast( | ||
pred.point.dt, | ||
test.fold + Penalty.Params ~ model.name, | ||
value.var="percent.error") | ||
pred.point.tall <- melt( | ||
pred.point.wide, | ||
measure.vars=c("OPART", "SegAnnot"), | ||
variable.name="competitor", | ||
value.name="percent.error") | ||
|
||
ggplot()+ | ||
theme_bw()+ | ||
theme(panel.spacing=grid::unit(0, "lines"))+ | ||
facet_grid(. ~ competitor)+ | ||
geom_abline(aes( | ||
slope=slope, intercept=intercept), | ||
color="grey", | ||
data=data.table(slope=1, intercept=0))+ | ||
geom_point(aes( | ||
LOPART, percent.error, color=Penalty.Params), | ||
data=pred.point.tall)+ | ||
coord_equal() | ||
|
||
pdf("figure-sequence-cv.pdf", width=4, height=2) | ||
print(gg) | ||
dev.off() |
Binary file not shown.