Cogni-e-SpinDB 1.0: Open Dataset of Electrospinning Parameter Configurations and Resultant Nanofiber Morphologies
This repository provides the search strategies, exploratory data analysis (EDA), and machine learning (ML) modeling used for a data descriptor paper for Cogni-e-SpinDB 1.0 data.
Electrospinning is a versatile technique for producing nanofibers, and process control plays a crucial role in tuning fiber morphology and multi-layered architectures.
This repository documents the exact search strategies used to identify research publications related to:
- General electrospinning
- Process control in electrospinning
- Multi-layer process control
- Multi-parameter process control
TS=(electrospinning OR “electro-sprayed” OR “electro-fabrication” OR “electrostatic spinning”)
TS=(electrospinning OR “electro-sprayed” OR “electro-fabrication” OR “electrostatic spinning”) AND TS=(control OR “feedback control” OR “closed-loop control” OR “process control” OR “parameter control” OR “parameter tuning” OR “process optimization”)
TITLE-ABS-KEY (electrospinning OR “electro-sprayed” OR “electro-fabrication” OR “electrostatic spinning”) AND TITLE-ABS-KEY (control OR “feedback control” OR “closed-loop control” OR “process control” OR “parameter control” OR “parameter tuning” OR “process optimization”) AND TITLE-ABS-KEY (multilayer OR “Multilayered” OR “layers” OR “layered” OR “Sandwich” OR “multi-walled” OR “Cross layer” OR “Poly laminate” OR “multi-level”)
TITLE-ABS-KEY (electrospinning OR “electro-sprayed” OR “electro-fabrication” OR “electrostatic spinning”) AND TITLE-ABS-KEY (control OR “feedback control” OR “closed-loop control” OR “process control” OR “parameter control” OR “parameter tuning” OR “process optimization”) AND TITLE-ABS-KEY (Multiparameter OR “Multivariable” OR “multi-input” OR “multivariate” OR “multiplex” OR “multicomponent” OR “multifactorial” OR “Poly parameter” OR “multidimensional” OR “n-dimensional” OR “multicriteria” OR “multi-argument”)
File | Description |
---|---|
requirements.txt |
Python dependencies required to run the notebooks. |
eda.ipynb |
Exploratory Data Analysis notebook exploring distributions, correlations, and basic trends. |
tail_analysis.ipynb |
Tail analysis applied to average fiber diameter in the dataset. |
pvdf_regression.ipynb |
ML regression model trained on PVDF nanofiber data. |
pva_regression.ipynb |
ML regression model trained on PVA nanofiber data. |
- Clone the repository:
git clone https://github.com/taltechloc/Cogni-e-SpinDB.git
cd cogni-e-spindb
Create a virtual environment and install dependencies:
pip install -r requirements.txt
Open Jupyter notebooks to explore the data and models:
- eda.ipynb
- tail_analysis.ipynb
- pvdf_regression.ipynb
- pva_regression.ipynb
- TS = Topic Search in Clarivate (Web of Science).
- TITLE-ABS-KEY = Title, Abstract, and Keyword search in Scopus.
- These queries were designed to capture the broadest relevant literature.
For questions or collaboration inquiries, please contact: 📧 mehrab.mahdian@taltech.ee