Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
144 changes: 112 additions & 32 deletions your-code/main.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -29,10 +29,21 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]\n"
]
}
],
"source": [
"newlist = [x for x in range(1,51)]\n",
"print(newlist)"
]
},
{
"cell_type": "markdown",
Expand All @@ -43,25 +54,36 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 92,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200]\n"
]
}
],
"source": [
"even_numbers = [x for x in range(2,202) if x % 2 == 0]\n",
"print(even_numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Use a list comprehension to create and print a list containing all elements of the 10 x 4 Numpy array below."
"## 3. Use a list comprehension to create and print a list containing all elements of the 10 x 4 list below.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 93,
"metadata": {},
"outputs": [],
"source": [
"a = np.array([[0.84062117, 0.48006452, 0.7876326 , 0.77109654],\n",
"a = [[0.84062117, 0.48006452, 0.7876326 , 0.77109654],\n",
" [0.44409793, 0.09014516, 0.81835917, 0.87645456],\n",
" [0.7066597 , 0.09610873, 0.41247947, 0.57433389],\n",
" [0.29960807, 0.42315023, 0.34452557, 0.4751035 ],\n",
Expand All @@ -70,7 +92,25 @@
" [0.71725408, 0.87702738, 0.31244595, 0.76615487],\n",
" [0.20754036, 0.57871812, 0.07214068, 0.40356048],\n",
" [0.12149553, 0.53222417, 0.9976855 , 0.12536346],\n",
" [0.80930099, 0.50962849, 0.94555126, 0.33364763]])"
" [0.80930099, 0.50962849, 0.94555126, 0.33364763]]"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.84062117, 0.48006452, 0.7876326, 0.77109654, 0.44409793, 0.09014516, 0.81835917, 0.87645456, 0.7066597, 0.09610873, 0.41247947, 0.57433389, 0.29960807, 0.42315023, 0.34452557, 0.4751035, 0.17003563, 0.46843998, 0.92796258, 0.69814654, 0.41290051, 0.19561071, 0.16284783, 0.97016248, 0.71725408, 0.87702738, 0.31244595, 0.76615487, 0.20754036, 0.57871812, 0.07214068, 0.40356048, 0.12149553, 0.53222417, 0.9976855, 0.12536346, 0.80930099, 0.50962849, 0.94555126, 0.33364763]\n"
]
}
],
"source": [
"bb = [bc for i in a for bc in i]\n",
"print(bb)"
]
},
{
Expand All @@ -80,6 +120,13 @@
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
Expand All @@ -89,25 +136,36 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.84062117, 0.7876326, 0.77109654, 0.81835917, 0.87645456, 0.7066597, 0.57433389, 0.92796258, 0.69814654, 0.97016248, 0.71725408, 0.87702738, 0.76615487, 0.57871812, 0.53222417, 0.9976855, 0.80930099, 0.50962849, 0.94555126]\n"
]
}
],
"source": [
"cc = [bc for i in a for bc in i if bc > 0.5]\n",
"print(cc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. Use a list comprehension to create and print a list containing all elements of the 5 x 2 x 3 Numpy array below."
"### 5. Use a list comprehension to create and print a list containing all elements of the 5 x 2 x 3 list below."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 96,
"metadata": {},
"outputs": [],
"source": [
"b = np.array([[[0.55867166, 0.06210792, 0.08147297],\n",
"b = [[[0.55867166, 0.06210792, 0.08147297],\n",
" [0.82579068, 0.91512478, 0.06833034]],\n",
"\n",
" [[0.05440634, 0.65857693, 0.30296619],\n",
Expand All @@ -120,35 +178,57 @@
" [0.8694668 , 0.65669313, 0.10708681]],\n",
"\n",
" [[0.07529684, 0.46470767, 0.47984544],\n",
" [0.65368638, 0.14901286, 0.23760688]]])"
" [0.65368638, 0.14901286, 0.23760688]]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 97,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.55867166, 0.06210792, 0.08147297, 0.82579068, 0.91512478, 0.06833034, 0.05440634, 0.65857693, 0.30296619, 0.06769833, 0.96031863, 0.51293743, 0.09143215, 0.71893382, 0.45850679, 0.58256464, 0.59005654, 0.56266457, 0.71600294, 0.87392666, 0.11434044, 0.8694668, 0.65669313, 0.10708681, 0.07529684, 0.46470767, 0.47984544, 0.65368638, 0.14901286, 0.23760688]\n"
]
}
],
"source": [
"ccc = [cd for i in b for bc in i for cd in bc]\n",
"print(ccc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6. Add a condition to the list comprehension above so that the last value in each subarray is printed, but only if it is less than or equal to 0.5."
"### 6. Add a condition to the list comprehension above so that the last value in each sublist is printed, but only if it is less than or equal to 0.5."
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.55867166, 0.82579068, 0.91512478, 0.65857693, 0.96031863, 0.51293743, 0.71893382, 0.58256464, 0.59005654, 0.56266457, 0.71600294, 0.87392666, 0.8694668, 0.65669313, 0.65368638]\n"
]
}
],
"source": [
"ccc = [cd for i in b for bc in i for cd in bc if cd > 0.5]\n",
"print(ccc)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7. Use a list comprehension to select and print the names of all CSV files in the */data* directory."
"### 7. (optional - revisit once we cover this material) Use a list comprehension to select and print the names of all CSV files in the */data* directory."
]
},
{
Expand All @@ -162,7 +242,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8. Use a list comprehension and the Pandas `read_csv` and `concat` methods to read all CSV files in the */data* directory and combine them into a single data frame. Display the top 10 rows of the resulting data frame."
"### 8. (optional - revisit once we cover this material) Use a list comprehension and the Pandas `read_csv` and `concat` methods to read all CSV files in the */data* directory and combine them into a single data frame. Display the top 10 rows of the resulting data frame."
]
},
{
Expand All @@ -176,7 +256,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 9. Use a list comprehension to select and print the column numbers for columns from the data set whose median is less than 0.48."
"### 9. (optional - revisit once we cover this material) Use a list comprehension to select and print the column numbers for columns from the data set whose median is less than 0.48."
]
},
{
Expand All @@ -190,7 +270,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 10. Use a list comprehension to add a new column (20) to the data frame whose values are the values in column 19 minus 0.1. Display the top 10 rows of the resulting data frame."
"### 10. (optional - revisit once we cover this material) Use a list comprehension to add a new column (20) to the data frame whose values are the values in column 19 minus 0.1. Display the top 10 rows of the resulting data frame."
]
},
{
Expand All @@ -204,7 +284,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### 11. Use a list comprehension to extract and print all values from the data set that are between 0.7 and 0.75."
"### 11. (optional - revisit once we cover this material) Use a list comprehension to extract and print all values from the data set that are between 0.7 and 0.75."
]
},
{
Expand All @@ -217,7 +297,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
Expand All @@ -231,7 +311,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.9.7"
}
},
"nbformat": 4,
Expand Down