Skip to content

syz825211943/Multi-Style-Photo-Cartoonization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Style Photo Cartoonization

Pytorch implement of Yezhi Shu, Ran Yi, Mengfei Xia, Zipeng Ye, Wang Zhao, Yang Chen, Yu-Kun Lai, Yong-Jin Liu. GAN-based Multi-Style Photo Cartoonization. IEEE Transactions on Visualization and Computer Graphics, DOI (identifier) 10.1109/TVCG.2021.3067201, 2021.

Our Proposed Framework

Results

Installation

Install PyTorch 1.2.0+ and torchvision from http://pytorch.org and other dependencies could be downloaded by

pip install -r requirements.txt

Train

  • Prepare your own dataset and put it under the dataset folder. Note that your own dataset should contain subfoloders: train0, train1_[style1name], train2_[style2name], ..., edge1_[style1name], edge2_[style2name], ..., test0. Different style names corresponding to different styles you have collected.
├─datasets
   ├─dataset name
      ├─ edge1_[style1name]
      ├─ edge2_[style2name]
      ├─ edge3_[style3name]
      ├─ test0
      ├─ train0
      ├─ train1_[style1name]
      ├─ train2_[style2name]
      └─ train3_[style3name]
python train.py --init --name train --dataroot [your dataset path]

Test

  • You can use your own trained model to test the model, also you can download pretrained models by the link below.
  • Put test real-world photo in test0 folder of your dataset.
python test.py --name train --serial_test --dataroot [your dataset path] --which_epoch 145

Citation

Reference code

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published