Open
Description
方法一:最小堆
解题思想:
新链表的下一个节点一定是K个链表头中的最小节点,所以考虑选择使用最小堆
步骤:
- 构建一个最小堆,并依次把链表头插入堆中
- 弹出堆顶接到输出链表,并将堆顶所在链表的新链表头插入堆中
- 等堆元素全部弹出,合并工作也就完成了
代码:
最小堆的类:
class MinHeap {
constructor() {
this.heap = [];
}
getParentIndex(i) {
return (i - 1) >> 1;
}
getLeftIndex(i) {
return 2 * i + 1;
}
getRightIndex(i) {
return 2 * i + 2;
}
swap(i1, i2) {
const temp = this.heap[i1];
this.heap[i1] = this.heap[i2];
this.heap[i2] = temp;
}
shiftUp(index) {
if ( index === 0) return;
const parentIndex = this.getParentIndex(index);
if (this.heap[parentIndex] && this.heap[parentIndex].val > this.heap[index].val) {
this.swap(parentIndex, index);
this.shiftUp(parentIndex);
}
}
shiftDown(index) {
if (index > this.heap.length - 1) return;
const leftIndex = this.getLeftIndex(index);
const rightIndex = this.getRightIndex(index);
if (this.heap[leftIndex] && this.heap[leftIndex].val < this.heap[index].val) {
this.swap(leftIndex, index);
this.shiftDown(leftIndex);
}
if (this.heap[rightIndex] && this.heap[rightIndex].val < this.heap[index].val) {
this.swap(rightIndex, index);
this.shiftDown(rightIndex);
}
}
insert(value) {
this.heap.push(value);
this.shiftUp(this.heap.length - 1);
}
pop() {
if (this.size() === 1) return this.heap.shift();
const top = this.heap[0];
this.heap[0] = this.heap.pop();
this.shiftDown(0);
return top;
}
peek() {
return this.heap[0];
}
size() {
return this.heap.length;
}
}
var mergeKLists = function(lists) {
const h = new MinHeap();
const res = new ListNode(null);
let p = res;
lists.forEach(l => {
!!l && h.insert(l);
})
while (h.size()) {
const node = h.pop();
p.next = node;
p = p.next;
if (node.next) {
h.insert(node.next)
}
}
return res.next;
};
复杂度分析:
- 时间复杂度:O(n*logK),n为所有节点之和,K是堆的大小;
- 空间复杂度:O(K),K是堆的大小。