Skip to content

svuksanova/dpnsProject

Repository files navigation

Texture Similarity App

A Python-based desktop application that compares two images and computes their texture similarity using classical texture descriptors: LBP, GLCM, Gabor filters, and Entropy.
The final similarity score is calculated using Euclidean distance and displayed in a simple, user-friendly interface.

🧠 Features

  • 📷 Select and compare any two images
  • 🔍 Uses four powerful descriptors:
    • LBP (Local Binary Pattern)
    • GLCM (Gray-Level Co-occurrence Matrix)
    • Gabor filters
    • Entropy
  • 📊 Computes a unified similarity score (%)
  • 💾 Automatically logs comparisons in a .txt file
  • 🖼 Visual side-by-side comparison with Matplotlib
  • 🪟 Simple GUI built with tkinter

📄 Documentation

For a full explanation of the algorithms, implementation details, and theoretical background, see the full project report:

📘 Documentation (PDF)

🛠 Technologies Used

  • Python 3.7+
  • OpenCV (cv2)
  • NumPy
  • Scikit-Image
  • SciPy
  • Matplotlib
  • Tkinter (for GUI)

🚀 Installation

  1. Clone the repository:
git clone https://github.com/svuksanova/dpnsProject.git
cd dpnsProject
  1. Install dependencies:
pip install opencv-python numpy scikit-image matplotlib scipy
  1. Run the main script:
python main.py

About

This project focuses on texture analysis using advanced image processing techniques.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages