-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6b519a7
commit 18c7e4c
Showing
1 changed file
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
import torch | ||
import torch.nn as nn | ||
|
||
class BasicBlockV1b(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, | ||
previous_dilation=1, norm_layer=nn.BatchNorm2d): | ||
super(BasicBlockV1b, self).__init__() | ||
self.conv1 = nn.Conv2d(inplanes, planes, 3, stride, | ||
dilation, dilation, bias=False) | ||
self.bn1 = norm_layer(planes) | ||
self.relu = nn.ReLU(True) | ||
self.conv2 = nn.Conv2d(planes, planes, 3, 1, previous_dilation, | ||
dilation=previous_dilation, bias=False) | ||
self.bn2 = norm_layer(planes) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
identity = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
|
||
if self.downsample is not None: | ||
identity = self.downsample(x) | ||
|
||
out += identity | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class BottleneckV1b(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, | ||
previous_dilation=1, norm_layer=nn.BatchNorm2d): | ||
super(BottleneckV1b, self).__init__() | ||
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | ||
self.bn1 = norm_layer(planes) | ||
self.conv2 = nn.Conv2d(planes, planes, 3, stride, | ||
dilation, dilation, bias=False) | ||
self.bn2 = norm_layer(planes) | ||
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | ||
self.bn3 = norm_layer(planes * self.expansion) | ||
self.relu = nn.ReLU(True) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
identity = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
if self.downsample is not None: | ||
identity = self.downsample(x) | ||
|
||
out += identity | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNetV1(nn.Module): | ||
|
||
def __init__(self, block, layers, num_classes=1000, deep_stem=False, | ||
zero_init_residual=False, norm_layer=nn.BatchNorm2d): | ||
output_stride = 16 | ||
scale = 1.0 | ||
if output_stride == 32: | ||
dilations = [1, 1] | ||
strides = [2, 2] | ||
elif output_stride == 16: | ||
dilations = [1, 2] | ||
strides = [2, 1] | ||
elif output_stride == 8: | ||
dilations = [2, 4] | ||
strides = [1, 1] | ||
else: | ||
raise NotImplementedError | ||
self.inplanes = int((128 if deep_stem else 64) * scale) | ||
super(ResNetV1, self).__init__() | ||
if deep_stem: | ||
# resnet vc | ||
mid_channel = int(64 * scale) | ||
self.conv1 = nn.Sequential( | ||
nn.Conv2d(3, mid_channel, 3, 2, 1, bias=False), | ||
norm_layer(mid_channel), | ||
nn.ReLU(True), | ||
nn.Conv2d(mid_channel, mid_channel, 3, 1, 1, bias=False), | ||
norm_layer(mid_channel), | ||
nn.ReLU(True), | ||
nn.Conv2d(mid_channel, self.inplanes, 3, 1, 1, bias=False) | ||
) | ||
else: | ||
self.conv1 = nn.Conv2d(3, self.inplanes, 7, 2, 3, bias=False) | ||
self.bn1 = norm_layer(self.inplanes) | ||
self.relu = nn.ReLU(True) | ||
self.maxpool = nn.MaxPool2d(3, 2, 1) | ||
self.layer1 = self._make_layer(block, int(64 * scale), layers[0], norm_layer=norm_layer) | ||
self.layer2 = self._make_layer(block, int(128 * scale), layers[1], stride=2, norm_layer=norm_layer) | ||
|
||
self.layer3 = self._make_layer(block, int(256 * scale), layers[2], stride=strides[0], dilation=dilations[0], | ||
norm_layer=norm_layer) | ||
self.layer4 = self._make_layer(block, int(512 * scale), layers[3], stride=strides[1], dilation=dilations[1], | ||
norm_layer=norm_layer, multi_grid=True, | ||
multi_dilation=[4,8,16]) | ||
|
||
self.last_inp_channels = int(512 * block.expansion * scale) | ||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | ||
self.fc = nn.Linear(int(512 * block.expansion * scale), num_classes) | ||
|
||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | ||
elif isinstance(m, nn.BatchNorm2d): | ||
nn.init.constant_(m.weight, 1) | ||
nn.init.constant_(m.bias, 0) | ||
|
||
if zero_init_residual: | ||
for m in self.modules(): | ||
if isinstance(m, BottleneckV1b): | ||
nn.init.constant_(m.bn3.weight, 0) | ||
elif isinstance(m, BasicBlockV1b): | ||
nn.init.constant_(m.bn2.weight, 0) | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=nn.BatchNorm2d, | ||
multi_grid=False, multi_dilation=None): | ||
downsample = None | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
downsample = nn.Sequential( | ||
nn.Conv2d(self.inplanes, planes * block.expansion, 1, stride, bias=False), | ||
norm_layer(planes * block.expansion), | ||
) | ||
|
||
layers = [] | ||
if not multi_grid: | ||
if dilation in (1, 2): | ||
layers.append(block(self.inplanes, planes, stride, dilation=1, downsample=downsample, | ||
previous_dilation=dilation, norm_layer=norm_layer)) | ||
elif dilation == 4: | ||
layers.append(block(self.inplanes, planes, stride, dilation=2, downsample=downsample, | ||
previous_dilation=dilation, norm_layer=norm_layer)) | ||
else: | ||
raise RuntimeError("=> unknown dilation size: {}".format(dilation)) | ||
else: | ||
layers.append(block(self.inplanes, planes, stride, dilation=multi_dilation[0], | ||
downsample=downsample, previous_dilation=dilation, norm_layer=norm_layer)) | ||
self.inplanes = planes * block.expansion | ||
|
||
if multi_grid: | ||
div = len(multi_dilation) | ||
for i in range(1, blocks): | ||
layers.append(block(self.inplanes, planes, dilation=multi_dilation[i % div], | ||
previous_dilation=dilation, norm_layer=norm_layer)) | ||
else: | ||
for _ in range(1, blocks): | ||
layers.append(block(self.inplanes, planes, dilation=dilation, | ||
previous_dilation=dilation, norm_layer=norm_layer)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
x = self.relu(x) | ||
x = self.maxpool(x) | ||
|
||
x1 = self.layer1(x) | ||
x2 = self.layer2(x1) | ||
x3 = self.layer3(x2) | ||
x4 = self.layer4(x3) | ||
|
||
# for classification | ||
# x = self.avgpool(c4) | ||
# x = x.view(x.size(0), -1) | ||
# x = self.fc(x) | ||
|
||
return x1, x2, x3, x4 | ||
|
||
def resnet50(): | ||
num_block = [3, 4, 6, 3] | ||
model = ResNetV1(BottleneckV1b, num_block) | ||
return model |