Skip to content

Commit

Permalink
Create ResNet
Browse files Browse the repository at this point in the history
  • Loading branch information
suxsyaoyuan authored Jul 11, 2023
1 parent 6b519a7 commit 18c7e4c
Showing 1 changed file with 199 additions and 0 deletions.
199 changes: 199 additions & 0 deletions ResNet
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
import torch
import torch.nn as nn

class BasicBlockV1b(nn.Module):
expansion = 1

def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
previous_dilation=1, norm_layer=nn.BatchNorm2d):
super(BasicBlockV1b, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, 3, stride,
dilation, dilation, bias=False)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(True)
self.conv2 = nn.Conv2d(planes, planes, 3, 1, previous_dilation,
dilation=previous_dilation, bias=False)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x):
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out


class BottleneckV1b(nn.Module):
expansion = 4

def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None,
previous_dilation=1, norm_layer=nn.BatchNorm2d):
super(BottleneckV1b, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = norm_layer(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, stride,
dilation, dilation, bias=False)
self.bn2 = norm_layer(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(True)
self.downsample = downsample
self.stride = stride

def forward(self, x):
identity = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out


class ResNetV1(nn.Module):

def __init__(self, block, layers, num_classes=1000, deep_stem=False,
zero_init_residual=False, norm_layer=nn.BatchNorm2d):
output_stride = 16
scale = 1.0
if output_stride == 32:
dilations = [1, 1]
strides = [2, 2]
elif output_stride == 16:
dilations = [1, 2]
strides = [2, 1]
elif output_stride == 8:
dilations = [2, 4]
strides = [1, 1]
else:
raise NotImplementedError
self.inplanes = int((128 if deep_stem else 64) * scale)
super(ResNetV1, self).__init__()
if deep_stem:
# resnet vc
mid_channel = int(64 * scale)
self.conv1 = nn.Sequential(
nn.Conv2d(3, mid_channel, 3, 2, 1, bias=False),
norm_layer(mid_channel),
nn.ReLU(True),
nn.Conv2d(mid_channel, mid_channel, 3, 1, 1, bias=False),
norm_layer(mid_channel),
nn.ReLU(True),
nn.Conv2d(mid_channel, self.inplanes, 3, 1, 1, bias=False)
)
else:
self.conv1 = nn.Conv2d(3, self.inplanes, 7, 2, 3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(True)
self.maxpool = nn.MaxPool2d(3, 2, 1)
self.layer1 = self._make_layer(block, int(64 * scale), layers[0], norm_layer=norm_layer)
self.layer2 = self._make_layer(block, int(128 * scale), layers[1], stride=2, norm_layer=norm_layer)

self.layer3 = self._make_layer(block, int(256 * scale), layers[2], stride=strides[0], dilation=dilations[0],
norm_layer=norm_layer)
self.layer4 = self._make_layer(block, int(512 * scale), layers[3], stride=strides[1], dilation=dilations[1],
norm_layer=norm_layer, multi_grid=True,
multi_dilation=[4,8,16])

self.last_inp_channels = int(512 * block.expansion * scale)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(int(512 * block.expansion * scale), num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

if zero_init_residual:
for m in self.modules():
if isinstance(m, BottleneckV1b):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlockV1b):
nn.init.constant_(m.bn2.weight, 0)

def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=nn.BatchNorm2d,
multi_grid=False, multi_dilation=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, 1, stride, bias=False),
norm_layer(planes * block.expansion),
)

layers = []
if not multi_grid:
if dilation in (1, 2):
layers.append(block(self.inplanes, planes, stride, dilation=1, downsample=downsample,
previous_dilation=dilation, norm_layer=norm_layer))
elif dilation == 4:
layers.append(block(self.inplanes, planes, stride, dilation=2, downsample=downsample,
previous_dilation=dilation, norm_layer=norm_layer))
else:
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
else:
layers.append(block(self.inplanes, planes, stride, dilation=multi_dilation[0],
downsample=downsample, previous_dilation=dilation, norm_layer=norm_layer))
self.inplanes = planes * block.expansion

if multi_grid:
div = len(multi_dilation)
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=multi_dilation[i % div],
previous_dilation=dilation, norm_layer=norm_layer))
else:
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation,
previous_dilation=dilation, norm_layer=norm_layer))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)

# for classification
# x = self.avgpool(c4)
# x = x.view(x.size(0), -1)
# x = self.fc(x)

return x1, x2, x3, x4

def resnet50():
num_block = [3, 4, 6, 3]
model = ResNetV1(BottleneckV1b, num_block)
return model

0 comments on commit 18c7e4c

Please sign in to comment.