Skip to content

feat: upgrade query adapter algorithm #157

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 29 additions & 13 deletions src/raglite/_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import warnings
from abc import ABC, abstractmethod
from collections.abc import Generator
from collections.abc import Iterator
from dataclasses import replace
from functools import cached_property
from pathlib import Path
Expand Down Expand Up @@ -60,13 +60,15 @@ def trec_run_filename(self) -> str:
def trec_run_filepath(self) -> Path:
return self.cwd / self.trec_run_filename

def score(self) -> Generator[ScoredDoc, None, None]:
def score(self) -> Iterator[ScoredDoc]:
"""Read or compute a TREC run."""
if self.trec_run_filepath.exists():
yield from read_trec_run(self.trec_run_filepath.as_posix()) # type: ignore[no-untyped-call]
return
if not self.search("q0", next(self.dataset.queries_iter()).text):
self.insert_documents()
if hasattr(self, "prescore"):
self.prescore()
with self.trec_run_filepath.open(mode="w") as trec_run_file:
for query in tqdm(
self.dataset.queries_iter(),
Expand Down Expand Up @@ -113,23 +115,37 @@ def insert_documents(self, max_workers: int | None = None) -> None:
]
insert_documents(documents, max_workers=max_workers, config=self.config)

def update_query_adapter(self, num_evals: int = 1024) -> None:
def prescore(self) -> None:
from sqlalchemy import func, select
from sqlmodel import Session

from raglite import insert_evals, update_query_adapter
from raglite._database import IndexMetadata
from raglite._database import Eval, IndexMetadata, create_database_engine

if not self.config.vector_search_query_adapter:
return

if (
self.config.vector_search_query_adapter
and IndexMetadata.get(config=self.config).get("query_adapter") is None
):
insert_evals(num_evals=num_evals, config=self.config)
required_evals = 1024
with Session(create_database_engine(self.config)) as session:
num_evals = session.execute(select(func.count()).select_from(Eval)).scalar_one()
if num_evals < required_evals:
insert_evals(num_evals=required_evals - num_evals, config=self.config)
if IndexMetadata.get(config=self.config).get("query_adapter") is None:
update_query_adapter(config=self.config)

def search(self, query_id: str, query: str, *, num_results: int = 10) -> list[ScoredDoc]:
from raglite import retrieve_chunks, vector_search
from raglite import retrieve_chunks, search_and_rerank_chunks, vector_search

self.update_query_adapter()
chunk_ids, scores = vector_search(query, num_results=2 * num_results, config=self.config)
chunks = retrieve_chunks(chunk_ids, config=self.config)
if self.config.reranker:
chunks = search_and_rerank_chunks(
query=query, num_results=2 * num_results, config=self.config
)
scores = [1 / rank for rank in range(1, len(chunks) + 1)]
else:
chunk_ids, scores = vector_search(
query, num_results=2 * num_results, config=self.config
)
chunks = retrieve_chunks(chunk_ids, config=self.config)
scored_docs = [
ScoredDoc(query_id=query_id, doc_id=chunk.document.id, score=score)
for chunk, score in zip(chunks, scores, strict=True)
Expand Down
63 changes: 47 additions & 16 deletions src/raglite/_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,25 +132,31 @@ def bench(
),
) -> None:
"""Run benchmark."""
import ir_datasets
import ir_measures
import pandas as pd

from raglite._bench import (
IREvaluator,
LlamaIndexEvaluator,
OpenAIVectorStoreEvaluator,
RAGLiteEvaluator,
)
try:
import ir_datasets
import ir_measures
import pandas as pd
from rerankers import Reranker

from raglite._bench import (
IREvaluator,
LlamaIndexEvaluator,
OpenAIVectorStoreEvaluator,
RAGLiteEvaluator,
)
except ModuleNotFoundError as import_error:
error_message = "To use the `bench` command, please install the `bench` extra."
raise ModuleNotFoundError(error_message) from import_error

# Initialise the benchmark.
evaluator: IREvaluator
measures = [ir_measures.parse_measure(measure)]
index, results = [], []
# Evaluate RAGLite (single-vector) + DuckDB HNSW + text-embedding-3-large.
# Evaluate RAGLite (single-vector) + DuckDB + text-embedding-3-large.
chunk_max_size = 2048
config = RAGLiteConfig(
embedder="text-embedding-3-large",
embedder=(embedder := "text-embedding-3-large"),
reranker=None,
chunk_max_size=chunk_max_size,
vector_search_multivector=False,
vector_search_query_adapter=False,
Expand All @@ -161,9 +167,10 @@ def bench(
)
index.append("RAGLite (single-vector)")
results.append(ir_measures.calc_aggregate(measures, dataset.qrels_iter(), evaluator.score()))
# Evaluate RAGLite (multi-vector) + DuckDB HNSW + text-embedding-3-large.
# Evaluate RAGLite (multi-vector) + DuckDB + text-embedding-3-large.
config = RAGLiteConfig(
embedder="text-embedding-3-large",
embedder=embedder,
reranker=None,
chunk_max_size=chunk_max_size,
vector_search_multivector=True,
vector_search_query_adapter=False,
Expand All @@ -174,10 +181,11 @@ def bench(
)
index.append("RAGLite (multi-vector)")
results.append(ir_measures.calc_aggregate(measures, dataset.qrels_iter(), evaluator.score()))
# Evaluate RAGLite (query adapter) + DuckDB HNSW + text-embedding-3-large.
# Evaluate RAGLite (multi-vector; query adapter) + DuckDB + text-embedding-3-large.
config = RAGLiteConfig(
llm=(llm := "gpt-4.1"),
embedder="text-embedding-3-large",
embedder=embedder,
reranker=None,
chunk_max_size=chunk_max_size,
vector_search_multivector=True,
vector_search_query_adapter=True,
Expand All @@ -191,6 +199,29 @@ def bench(
)
index.append("RAGLite (query adapter)")
results.append(ir_measures.calc_aggregate(measures, dataset.qrels_iter(), evaluator.score()))
# Evaluate RAGLite (multi-vector; query adapter; reranker) + DuckDB + text-embedding-3-large.
if os.environ.get("CO_API_KEY"):
config = RAGLiteConfig(
llm=llm,
embedder=embedder,
reranker=Reranker(
"rerank-v3.5", model_type="cohere", api_key=os.environ["CO_API_KEY"], verbose=0
),
chunk_max_size=chunk_max_size,
vector_search_multivector=True,
vector_search_query_adapter=True,
)
dataset = ir_datasets.load(dataset_name)
evaluator = RAGLiteEvaluator(
dataset,
insert_variant=f"multi-vector-{chunk_max_size // 4}t",
search_variant=f"query-adapter-{llm}-cohere-rerank-3.5",
config=config,
)
index.append("RAGLite (Cohere Rerank 3.5)")
results.append(
ir_measures.calc_aggregate(measures, dataset.qrels_iter(), evaluator.score())
)
# Evaluate LLamaIndex + FAISS HNSW + text-embedding-3-large.
dataset = ir_datasets.load(dataset_name)
evaluator = LlamaIndexEvaluator(dataset)
Expand Down
1 change: 1 addition & 0 deletions src/raglite/_insert.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@ def insert_documents( # noqa: C901
session.flush() # Flush changes to the database.
session.expunge_all() # Release memory of flushed changes.
num_unflushed_embeddings = 0
pbar.set_postfix({"id": document_record.id})
pbar.update()
session.commit()
if engine.dialect.name == "duckdb":
Expand Down
Loading