Skip to content

feat(ai): inference API #501

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 119 additions & 0 deletions examples/ort-raw-session/index.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
/*
const modelUrl = 'https://huggingface.co/kalleby/hp-to-miles/resolve/main/model.onnx?download=true';
const modelConfigUrl =
'https://huggingface.co/kalleby/hp-to-miles/resolve/main/config.json?download=true';

const model = await Supabase.ai.RawSession.fromUrl(modelUrl);
const modelConfig = await fetch(modelConfigUrl).then((r) => r.json());

Deno.serve(async (req: Request) => {
const params = new URL(req.url).searchParams;
const inputValue = parseInt(params.get('value'));

const input = new Supabase.ai.RawTensor('float32', [inputValue], [1, 1]);
.minMaxNormalize(modelConfig.input.min, modelConfig.input.max);

const output = await model.run({
'dense_dense1_input': input,
});

console.log('output', output);

const outputTensor = output['dense_Dense4']
.minMaxUnnormalize(modelConfig.label.min, modelConfig.label.max);

return Response.json({ result: outputTensor.data });
});
*/

// transformers.js Compatible:
// import { Tensor } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.3.2';
// const rawTensor = new Supabase.ai.RawTensor('string', urls, [urls.length]);
// console.log('raw tensor', rawTensor );
//
// const tensor = new Tensor(rawTensor);
// console.log('hf tensor', tensor);
//
// 'hf tensor operations'
// tensor.min(); tensor.max(); tensor.norm() ....

// const modelUrl =
// 'https://huggingface.co/pirocheto/phishing-url-detection/resolve/main/model.onnx?download=true';

/*
const { Tensor, RawSession } = Supabase.ai;

const model = await RawSession.fromHuggingFace('pirocheto/phishing-url-detection', {
path: {
template: `{REPO_ID}/resolve/{REVISION}/{MODEL_FILE}?donwload=true`,
modelFile: 'model.onnx',
},
});

console.log('session', model);

Deno.serve(async (_req: Request) => {
const urls = [
'https://clubedemilhagem.com/home.php',
'http://www.medicalnewstoday.com/articles/188939.php',
'https://magalu-crediarioluiza.com/Produto_20203/produto.php?sku=1',
];

const inputs = new Tensor('string', urls, [urls.length]);
console.log('tensor', inputs.data);

const output = await model.run({ inputs });
console.log(output);

return Response.json({ result: output.probabilities });
});
*/

const { RawTensor, RawSession } = Supabase.ai;

const session = await RawSession.fromHuggingFace(
"kallebysantos/vehicle-emission",
{
path: {
modelFile: "model.onnx",
},
},
);

Deno.serve(async (_req: Request) => {
// sample data could be a JSON request
const carsBatchInput = [{
"Model_Year": 2021,
"Engine_Size": 2.9,
"Cylinders": 6,
"Fuel_Consumption_in_City": 13.9,
"Fuel_Consumption_in_City_Hwy": 10.3,
"Fuel_Consumption_comb": 12.3,
"Smog_Level": 3,
}, {
"Model_Year": 2023,
"Engine_Size": 2.4,
"Cylinders": 4,
"Fuel_Consumption_in_City": 9.9,
"Fuel_Consumption_in_City_Hwy": 7.0,
"Fuel_Consumption_comb": 8.6,
"Smog_Level": 3,
}];

// Parsing objects to tensor input
const inputTensors: Record<string, Supabase.ai.RawTensor<"float32">> = {};
session.inputs.forEach((inputKey) => {
const values = carsBatchInput.map((item) => item[inputKey]);

inputTensors[inputKey] = new RawTensor("float32", values, [
values.length,
1,
]);
});

const { emissions } = await session.run(inputTensors);
console.log(emissions);
// [ 289.01, 199.53]

return Response.json({ result: emissions });
});
111 changes: 111 additions & 0 deletions examples/text-to-audio/index.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
import { PreTrainedTokenizer } from "https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.3.1";

// import 'phonemize' code from Kokoro.js repo
import { phonemize } from "./phonemizer.js";

const { RawTensor, RawSession } = Supabase.ai;

/* NOTE: Reference [original paper](https://arxiv.org/pdf/2306.07691#Model%20Training):
> All datasets were resampled to 24 kHz to match LibriTTS, and the texts
> were converted into phonemes using phonemizer'
*/
const SAMPLE_RATE = 24000; // 24 kHz

/* NOTE: Reference [original paper](https://arxiv.org/pdf/2306.07691#Detailed%20Model%20Architectures):
> The size of s and c is 256 × 1
*/
const STYLE_DIM = 256;
const MODEL_ID = "onnx-community/Kokoro-82M-ONNX";

// https://huggingface.co/onnx-community/Kokoro-82M-ONNX#samples
const ALLOWED_VOICES = [
"af_bella",
"af_nicole",
"af_sarah",
"af_sky",
"am_adam",
"am_michael",
"bf_emma",
"bf_isabella",
"bm_george",
"bm_lewis",
];

const session = await RawSession.fromHuggingFace(MODEL_ID);

Deno.serve(async (req) => {
const params = new URL(req.url).searchParams;
const text = params.get("text") ?? "Hello from Supabase!";
const voice = params.get("voice") ?? "af_bella";

if (!ALLOWED_VOICES.includes(voice)) {
return Response.json({
error: `invalid voice '${voice}'`,
must_be_one_of: ALLOWED_VOICES,
}, { status: 400 });
}

const tokenizer = await loadTokenizer();
const language = voice.at(0); // 'a'merican | 'b'ritish
const phonemes = await phonemize(text, language);
const { input_ids } = tokenizer(phonemes, {
truncation: true,
});

// Select voice style based on number of input tokens
const num_tokens = Math.max(
input_ids.dims.at(-1) - 2, // Without padding;
0,
);

const voiceStyle = await loadVoiceStyle(voice, num_tokens);

const { waveform } = await session.run({
input_ids,
style: voiceStyle,
speed: new Tensor("float32", [1], [1]),
});

// Do `wave` encoding from rust backend
const audio = await waveform.tryEncodeAudio(SAMPLE_RATE);

return new Response(audio, {
headers: {
"Content-Type": "audio/wav",
},
});
});

async function loadVoiceStyle(voice: string, num_tokens: number) {
const voice_url =
`https://huggingface.co/onnx-community/Kokoro-82M-ONNX/resolve/main/voices/${voice}.bin?download=true`;

console.log("loading voice:", voice_url);

const voiceBuffer = await fetch(voice_url).then(async (res) =>
await res.arrayBuffer()
);

const offset = num_tokens * STYLE_DIM;
const voiceData = new Float32Array(voiceBuffer).slice(
offset,
offset + STYLE_DIM,
);

return new Tensor("float32", voiceData, [1, STYLE_DIM]);
}

async function loadTokenizer() {
// BUG: invalid 'h' not JSON. That's why we need to manually fetch the assets
// const tokenizer = await AutoTokenizer.from_pretrained(MODEL_ID);

const tokenizerData = await fetch(
"https://huggingface.co/onnx-community/Kokoro-82M-ONNX/resolve/main/tokenizer.json?download=true",
).then(async (res) => await res.json());

const tokenizerConfig = await fetch(
"https://huggingface.co/onnx-community/Kokoro-82M-ONNX/resolve/main/tokenizer_config.json?download=true",
).then(async (res) => await res.json());

return new PreTrainedTokenizer(tokenizerData, tokenizerConfig);
}
Loading