Skip to content

[TNNLS 24] Beyond Photometric Consistency: Geometry-based Occlusion-aware Unsupervised Light Field Disparity Estimation

Notifications You must be signed in to change notification settings

sunshineHDU/UnLFdisp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UnLFdisp

Wenhui Zhou, Lili Lin, Yongjie Hong, Qiujian Li, Xingfa Shen, and Ercan Engin Kuruoglu, Beyond Photometric Consistency: Geometry-based Occlusion-aware Unsupervised Light Field Disparity Estimation. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 15660--15674. MP4https://ieeexplore.ieee.org/document/10172242

Requirements

pip install -r requirements.txt

dataset

We used the HCI 4D LF benchmark for training and evaluation.Please refer to the benchmark website for details.

train

In monodepth_main_zhoubo_mask_v1.py, set train_or_test=0

python monodepth_main_zhoubo_mask_v1

test

In monodepth_main_zhoubo_mask_v1.py, set train_or_test=1

python monodepth_main_zhoubo_mask_v1

About

[TNNLS 24] Beyond Photometric Consistency: Geometry-based Occlusion-aware Unsupervised Light Field Disparity Estimation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages