forked from hemingkx/CLUENER2020
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
78 additions
and
78 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,6 +15,7 @@ | |
lr = 0.001 | ||
max_epoch = 10 | ||
lr_decay = 0.95 | ||
epochs = 1 | ||
|
||
label2id = { | ||
"O": 0, | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,5 @@ | ||
from data_process import Processor | ||
from Vocabulary import Vocabulary | ||
import config | ||
import numpy as np | ||
from data_loader import NERDataset | ||
import torch | ||
|
||
if __name__ == '__main__': | ||
processor = Processor(config) | ||
processor.data_process() | ||
# processor.get_examples('sample') | ||
vocab = Vocabulary(config) | ||
vocab.get_vocab() | ||
dataset = NERDataset(config.train_dir, vocab, config.label2id) | ||
a = torch.tensor([2, 3]).fill_(0) | ||
print(a) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,87 +1,94 @@ | ||
from torch import optim | ||
from torch.utils.data import DataLoader | ||
import os | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch import optim | ||
from torch.utils.data import DataLoader | ||
|
||
import config | ||
from data_process import Processor | ||
from Vocabulary import Vocabulary | ||
from data_loader import NERDataset | ||
from model import BiLSTM_CRF | ||
|
||
input_array = [[1642, 1291, 40, 2255, 970, 46, 124, 1604, 1915, 547, 0, 173, | ||
303, 124, 1029, 52, 20, 2839, 2, 2255, 2078, 1553, 225, 540, | ||
96, 469, 1704, 0, 174, 3, 8, 728, 903, 403, 538, 668, | ||
179, 27, 78, 292, 7, 134, 2078, 1029, 0, 0, 0, 0, | ||
0], | ||
[28, 6, 926, 72, 209, 330, 308, 167, 87, 1345, 1, 528, | ||
412, 0, 584, 1, 6, 28, 326, 1, 361, 342, 3256, 17, | ||
19, 1549, 3257, 131, 2, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0], | ||
[6, 3, 58, 1930, 37, 407, 1068, 40, 1299, 1443, 103, 1235, | ||
1040, 139, 879, 11, 124, 200, 135, 97, 1138, 1016, 402, 696, | ||
337, 215, 402, 288, 10, 5, 5, 17, 0, 248, 597, 110, | ||
84, 1, 135, 97, 1138, 1016, 402, 696, 402, 200, 109, 164, | ||
0], | ||
[174, 6, 110, 84, 3, 477, 332, 133, 66, 11, 557, 107, | ||
181, 350, 0, 70, 196, 166, 50, 120, 26, 89, 66, 19, | ||
564, 0, 36, 26, 48, 243, 1308, 0, 139, 212, 621, 300, | ||
0, 444, 720, 4, 177, 165, 164, 2, 0, 0, 0, 0, | ||
0]] | ||
|
||
label_array = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 14, 14, 14, 14, 14, | ||
14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 4, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 1, 11, 0, 1, 11, 11, 11, 11, 11, 0, 0, 0, 0, 8, 18, 18, | ||
18, 18, 18, 18, 18, 18, 0, 0, 9, 19, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 8, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 18, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]] | ||
|
||
test_input = torch.tensor(input_array, dtype=torch.long) | ||
test_label = torch.tensor(label_array, dtype=torch.long) | ||
|
||
if __name__ == "__main__": | ||
# 处理数据,分离文本和标签 | ||
processor = Processor(config) | ||
processor.data_process() | ||
# 建立词表 | ||
vocab = Vocabulary(config) | ||
vocab.get_vocab() | ||
|
||
test_input = torch.LongTensor([[1642, 1291, 40, 2255, 970, 46, 124, 1604, 1915, 547, 0, 173, | ||
303, 124, 1029, 52, 20, 2839, 2, 2255, 2078, 1553, 225, 540, | ||
96, 469, 1704, 0, 174, 3, 8, 728, 903, 403, 538, 668, | ||
179, 27, 78, 292, 7, 134, 2078, 1029, 0, 0, 0, 0, | ||
0], | ||
[28, 6, 926, 72, 209, 330, 308, 167, 87, 1345, 1, 528, | ||
412, 0, 584, 1, 6, 28, 326, 1, 361, 342, 3256, 17, | ||
19, 1549, 3257, 131, 2, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0], | ||
[6, 3, 58, 1930, 37, 407, 1068, 40, 1299, 1443, 103, 1235, | ||
1040, 139, 879, 11, 124, 200, 135, 97, 1138, 1016, 402, 696, | ||
337, 215, 402, 288, 10, 5, 5, 17, 0, 248, 597, 110, | ||
84, 1, 135, 97, 1138, 1016, 402, 696, 402, 200, 109, 164, | ||
0], | ||
[174, 6, 110, 84, 3, 477, 332, 133, 66, 11, 557, 107, | ||
181, 350, 0, 70, 196, 166, 50, 120, 26, 89, 66, 19, | ||
564, 0, 36, 26, 48, 243, 1308, 0, 139, 212, 621, 300, | ||
0, 444, 720, 4, 177, 165, 164, 2, 0, 0, 0, 0, | ||
0]]) | ||
test_label = torch.LongTensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 14, 14, 14, 14, 14, | ||
14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 4, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 1, 11, 0, 1, 11, 11, 11, 11, 11, 0, 0, 0, 0, 8, 18, 18, | ||
18, 18, 18, 18, 18, 18, 0, 0, 9, 19, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | ||
[0, 0, 0, 0, 0, 8, 18, 18, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 18, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) | ||
mydataset = NERDataset(config.train_dir, vocab, config.label2id) | ||
clue_dataloader = DataLoader( | ||
mydataset, | ||
batch_size=config.batch_size, | ||
shuffle=True, | ||
collate_fn=mydataset.collate_fn) | ||
model = BiLSTM_CRF( | ||
embedding_size=config.embedding_size, | ||
hidden_size=config.hidden_size, | ||
drop_out=config.drop_out, | ||
vocab_size=vocab.vocab_size(), | ||
tagset_size=vocab.label_size()) | ||
# build data_loader | ||
dataset = NERDataset(config.train_dir, vocab, config.label2id) | ||
data_loader = DataLoader(dataset, batch_size=config.batch_size, | ||
shuffle=True, collate_fn=dataset.collate_fn) | ||
# model | ||
model = BiLSTM_CRF(embedding_size=config.embedding_size, | ||
hidden_size=config.hidden_size, | ||
drop_out=config.drop_out, | ||
vocab_size=vocab.vocab_size(), | ||
tagset_size=vocab.label_size()) | ||
# loss and optimizer | ||
loss_function = nn.NLLLoss() | ||
optimizer = optim.SGD(model.parameters(), lr=config.lr) | ||
|
||
with torch.no_grad(): | ||
tag_scores = model(test_input) | ||
print(tag_scores) | ||
print(tag_scores.size()) | ||
for idx, batch_samples in enumerate(clue_dataloader): | ||
# print(idx, batch_samples) | ||
if idx >= 100: | ||
break | ||
input_ids, label_ids, input_lens = batch_samples | ||
model.zero_grad() | ||
tag_scores = model.forward(input_ids) | ||
tag_scores = tag_scores.permute(0, 2, 1) | ||
loss = loss_function(tag_scores, label_ids) | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
y_pred = model(test_input) | ||
print(y_pred) | ||
print(y_pred.size()) | ||
# start training | ||
for epoch in range(config.epochs): | ||
for idx, batch_samples in enumerate(data_loader): | ||
if idx >= 100: | ||
break | ||
x, y, lens = batch_samples | ||
model.zero_grad() | ||
y_pred = model.forward(x) | ||
y_pred = y_pred.permute(0, 2, 1) | ||
loss = loss_function(y_pred, y) | ||
loss.backward() | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
if idx % 300 == 0: | ||
print("epoch: ", epoch, ", index: ", ", loss: ", loss) | ||
# print(idx) | ||
print("trainning end") | ||
print("Training end") | ||
with torch.no_grad(): | ||
tag_scores = model(test_input) | ||
y_pred = model(test_input) | ||
print(test_label) | ||
print(tag_scores) | ||
print(y_pred) |