Skip to content

Commit

Permalink
Merge pull request coqui-ai#3207 from coqui-ai/update_xtts_cloning
Browse files Browse the repository at this point in the history
Update XTTS cloning
  • Loading branch information
erogol authored Nov 13, 2023
2 parents 6f1cba2 + 92fa988 commit f32a465
Show file tree
Hide file tree
Showing 8 changed files with 115 additions and 51 deletions.
9 changes: 6 additions & 3 deletions TTS/cs_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,6 @@ class CS_API:
},
}


SUPPORTED_LANGUAGES = ["en", "es", "de", "fr", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja"]

def __init__(self, api_token=None, model="XTTS"):
Expand Down Expand Up @@ -308,7 +307,11 @@ def tts_to_file(
print(api.list_speakers_as_tts_models())

ts = time.time()
wav, sr = api.tts("It took me quite a long time to develop a voice.", language="en", speaker_name=api.speakers[0].name)
wav, sr = api.tts(
"It took me quite a long time to develop a voice.", language="en", speaker_name=api.speakers[0].name
)
print(f" [i] XTTS took {time.time() - ts:.2f}s")

filepath = api.tts_to_file(text="Hello world!", speaker_name=api.speakers[0].name, language="en", file_path="output.wav")
filepath = api.tts_to_file(
text="Hello world!", speaker_name=api.speakers[0].name, language="en", file_path="output.wav"
)
10 changes: 8 additions & 2 deletions TTS/tts/configs/xtts_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,12 @@ class XttsConfig(BaseTTSConfig):
Defaults to `16`.
gpt_cond_len (int):
Secs audio to be used as conditioning for the autoregressive model. Defaults to `3`.
Secs audio to be used as conditioning for the autoregressive model. Defaults to `12`.
gpt_cond_chunk_len (int):
Audio chunk size in secs. Audio is split into chunks and latents are extracted for each chunk. Then the
latents are averaged. Chunking improves the stability. It must be <= gpt_cond_len.
If gpt_cond_len == gpt_cond_chunk_len, no chunking. Defaults to `4`.
max_ref_len (int):
Maximum number of seconds of audio to be used as conditioning for the decoder. Defaults to `10`.
Expand Down Expand Up @@ -95,6 +100,7 @@ class XttsConfig(BaseTTSConfig):
num_gpt_outputs: int = 1

# cloning
gpt_cond_len: int = 3
gpt_cond_len: int = 12
gpt_cond_chunk_len: int = 4
max_ref_len: int = 10
sound_norm_refs: bool = False
23 changes: 17 additions & 6 deletions TTS/tts/layers/tortoise/dpm_solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -562,15 +562,21 @@ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [3,] * (
orders = [
3,
] * (
K - 2
) + [2, 1]
elif steps % 3 == 1:
orders = [3,] * (
orders = [
3,
] * (
K - 1
) + [1]
else:
orders = [3,] * (
orders = [
3,
] * (
K - 1
) + [2]
elif order == 2:
Expand All @@ -581,7 +587,9 @@ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type
] * K
else:
K = steps // 2 + 1
orders = [2,] * (
orders = [
2,
] * (
K - 1
) + [1]
elif order == 1:
Expand Down Expand Up @@ -1440,7 +1448,10 @@ def sample(
model_prev_list[-1] = self.model_fn(x, t)
elif method in ["singlestep", "singlestep_fixed"]:
if method == "singlestep":
(timesteps_outer, orders,) = self.get_orders_and_timesteps_for_singlestep_solver(
(
timesteps_outer,
orders,
) = self.get_orders_and_timesteps_for_singlestep_solver(
steps=steps,
order=order,
skip_type=skip_type,
Expand Down Expand Up @@ -1548,4 +1559,4 @@ def expand_dims(v, dims):
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,) * (dims - 1)]
return v[(...,) + (None,) * (dims - 1)]
11 changes: 7 additions & 4 deletions TTS/tts/layers/xtts/tokenizer.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
import json
import os
import re
from functools import cached_property

import pypinyin
import torch
from hangul_romanize import Transliter
from hangul_romanize.rule import academic
from num2words import num2words
from tokenizers import Tokenizer
from functools import cached_property

from TTS.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words

Expand Down Expand Up @@ -560,19 +560,22 @@ def __init__(self, vocab_file=None):
@cached_property
def katsu(self):
import cutlet

return cutlet.Cutlet()

def check_input_length(self, txt, lang):
limit = self.char_limits.get(lang, 250)
if len(txt) > limit:
print(f"[!] Warning: The text length exceeds the character limit of {limit} for language '{lang}', this might cause truncated audio.")
print(
f"[!] Warning: The text length exceeds the character limit of {limit} for language '{lang}', this might cause truncated audio."
)

def preprocess_text(self, txt, lang):
if lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it", "nl", "pl", "pt", "ru", "tr", "zh", "zh-cn"}:
txt = multilingual_cleaners(txt, lang)
if lang in {"zh", "zh-cn"}:
txt = chinese_transliterate(txt)
elif lang == "ja":
elif lang == "ja":
txt = japanese_cleaners(txt, self.katsu)
elif lang == "ko":
txt = korean_cleaners(txt)
Expand Down
1 change: 1 addition & 0 deletions TTS/tts/layers/xtts/trainer/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import torch
import torch.nn.functional as F
import torch.utils.data

from TTS.tts.models.xtts import load_audio

torch.set_num_threads(1)
Expand Down
104 changes: 70 additions & 34 deletions TTS/tts/models/xtts.py
Original file line number Diff line number Diff line change
Expand Up @@ -255,39 +255,57 @@ def device(self):
return next(self.parameters()).device

@torch.inference_mode()
def get_gpt_cond_latents(self, audio, sr, length: int = 3):
def get_gpt_cond_latents(self, audio, sr, length: int = 30, chunk_length: int = 6):
"""Compute the conditioning latents for the GPT model from the given audio.
Args:
audio (tensor): audio tensor.
sr (int): Sample rate of the audio.
length (int): Length of the audio in seconds. Defaults to 3.
length (int): Length of the audio in seconds. If < 0, use the whole audio. Defaults to 30.
chunk_length (int): Length of the audio chunks in seconds. When `length == chunk_length`, the whole audio
is being used without chunking. It must be < `length`. Defaults to 6.
"""
if sr != 22050:
audio = torchaudio.functional.resample(audio, sr, 22050)
audio = audio[:, : 22050 * length]
if length > 0:
audio = audio[:, : 22050 * length]
if self.args.gpt_use_perceiver_resampler:
n_fft = 2048
hop_length = 256
win_length = 1024
style_embs = []
for i in range(0, audio.shape[1], 22050 * chunk_length):
audio_chunk = audio[:, i : i + 22050 * chunk_length]
mel_chunk = wav_to_mel_cloning(
audio_chunk,
mel_norms=self.mel_stats.cpu(),
n_fft=2048,
hop_length=256,
win_length=1024,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
style_emb = self.gpt.get_style_emb(mel_chunk.to(self.device), None)
style_embs.append(style_emb)

# mean style embedding
cond_latent = torch.stack(style_embs).mean(dim=0)
else:
n_fft = 4096
hop_length = 1024
win_length = 4096
mel = wav_to_mel_cloning(
audio,
mel_norms=self.mel_stats.cpu(),
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
cond_latent = self.gpt.get_style_emb(mel.to(self.device))
mel = wav_to_mel_cloning(
audio,
mel_norms=self.mel_stats.cpu(),
n_fft=4096,
hop_length=1024,
win_length=4096,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
cond_latent = self.gpt.get_style_emb(mel.to(self.device))
return cond_latent.transpose(1, 2)

@torch.inference_mode()
Expand Down Expand Up @@ -323,12 +341,24 @@ def get_speaker_embedding(self, audio, sr):
def get_conditioning_latents(
self,
audio_path,
max_ref_length=30,
gpt_cond_len=6,
max_ref_length=10,
gpt_cond_chunk_len=6,
librosa_trim_db=None,
sound_norm_refs=False,
load_sr=24000,
load_sr=22050,
):
"""Get the conditioning latents for the GPT model from the given audio.
Args:
audio_path (str or List[str]): Path to reference audio file(s).
max_ref_length (int): Maximum length of each reference audio in seconds. Defaults to 30.
gpt_cond_len (int): Length of the audio used for gpt latents. Defaults to 6.
gpt_cond_chunk_len (int): Chunk length used for gpt latents. It must be <= gpt_conf_len. Defaults to 6.
librosa_trim_db (int, optional): Trim the audio using this value. If None, not trimming. Defaults to None.
sound_norm_refs (bool, optional): Whether to normalize the audio. Defaults to False.
load_sr (int, optional): Sample rate to load the audio. Defaults to 24000.
"""
# deal with multiples references
if not isinstance(audio_path, list):
audio_paths = [audio_path]
Expand All @@ -339,24 +369,24 @@ def get_conditioning_latents(
audios = []
speaker_embedding = None
for file_path in audio_paths:
# load the audio in 24khz to avoid issued with multiple sr references
audio = load_audio(file_path, load_sr)
audio = audio[:, : load_sr * max_ref_length].to(self.device)
if audio.shape[0] > 1:
audio = audio.mean(0, keepdim=True)
if sound_norm_refs:
audio = (audio / torch.abs(audio).max()) * 0.75
if librosa_trim_db is not None:
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]

# compute latents for the decoder
speaker_embedding = self.get_speaker_embedding(audio, load_sr)
speaker_embeddings.append(speaker_embedding)

audios.append(audio)

# use a merge of all references for gpt cond latents
# merge all the audios and compute the latents for the gpt
full_audio = torch.cat(audios, dim=-1)
gpt_cond_latents = self.get_gpt_cond_latents(full_audio, load_sr, length=gpt_cond_len) # [1, 1024, T]
gpt_cond_latents = self.get_gpt_cond_latents(
full_audio, load_sr, length=gpt_cond_len, chunk_length=gpt_cond_chunk_len
) # [1, 1024, T]

if speaker_embeddings:
speaker_embedding = torch.stack(speaker_embeddings)
Expand Down Expand Up @@ -397,6 +427,7 @@ def inference_with_config(self, text, config, ref_audio_path, language, **kwargs
"top_k": config.top_k,
"top_p": config.top_p,
"gpt_cond_len": config.gpt_cond_len,
"gpt_cond_chunk_len": config.gpt_cond_chunk_len,
"max_ref_len": config.max_ref_len,
"sound_norm_refs": config.sound_norm_refs,
}
Expand All @@ -417,7 +448,8 @@ def full_inference(
top_p=0.85,
do_sample=True,
# Cloning
gpt_cond_len=6,
gpt_cond_len=30,
gpt_cond_chunk_len=6,
max_ref_len=10,
sound_norm_refs=False,
**hf_generate_kwargs,
Expand Down Expand Up @@ -448,7 +480,10 @@ def full_inference(
(aka boring) outputs. Defaults to 0.8.
gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used
else the first `gpt_cond_len` secs is used. Defaults to 6 seconds.
else the first `gpt_cond_len` secs is used. Defaults to 30 seconds.
gpt_cond_chunk_len: (int) Chunk length used for cloning. It must be <= `gpt_cond_len`.
If gpt_cond_len == gpt_cond_chunk_len, no chunking. Defaults to 6 seconds.
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive
transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation
Expand All @@ -461,6 +496,7 @@ def full_inference(
(gpt_cond_latent, speaker_embedding) = self.get_conditioning_latents(
audio_path=ref_audio_path,
gpt_cond_len=gpt_cond_len,
gpt_cond_chunk_len=gpt_cond_chunk_len,
max_ref_length=max_ref_len,
sound_norm_refs=sound_norm_refs,
)
Expand Down Expand Up @@ -566,7 +602,7 @@ def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
if overlap_len > len(wav_chunk):
# wav_chunk is smaller than overlap_len, pass on last wav_gen
if wav_gen_prev is not None:
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len):]
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) :]
else:
# not expecting will hit here as problem happens on last chunk
wav_chunk = wav_gen[-overlap_len:]
Expand All @@ -576,7 +612,7 @@ def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device)
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device)
wav_chunk[:overlap_len] += crossfade_wav

wav_overlap = wav_gen[-overlap_len:]
wav_gen_prev = wav_gen
return wav_chunk, wav_gen_prev, wav_overlap
Expand Down
4 changes: 3 additions & 1 deletion tests/xtts_tests/test_xtts_gpt_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,9 @@


# Training sentences generations
SPEAKER_REFERENCE = ["tests/data/ljspeech/wavs/LJ001-0002.wav"] # speaker reference to be used in training test sentences
SPEAKER_REFERENCE = [
"tests/data/ljspeech/wavs/LJ001-0002.wav"
] # speaker reference to be used in training test sentences
LANGUAGE = config_dataset.language


Expand Down
4 changes: 3 additions & 1 deletion tests/xtts_tests/test_xtts_v2-0_gpt_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,9 @@


# Training sentences generations
SPEAKER_REFERENCE = ["tests/data/ljspeech/wavs/LJ001-0002.wav"] # speaker reference to be used in training test sentences
SPEAKER_REFERENCE = [
"tests/data/ljspeech/wavs/LJ001-0002.wav"
] # speaker reference to be used in training test sentences
LANGUAGE = config_dataset.language


Expand Down

0 comments on commit f32a465

Please sign in to comment.