forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Bug fix][Core] assert num_new_tokens == 1 fails when SamplingParams.…
…n is not 1 and max_tokens is large & Add tests for preemption (vllm-project#4451)
- Loading branch information
Showing
6 changed files
with
172 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
"""Compare the short outputs of HF and vLLM when using greedy sampling. | ||
VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 has to be set before running this test. | ||
Run `VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 | ||
pytest tests/basic_correctness/test_preemption.py`. | ||
""" | ||
import pytest | ||
|
||
from vllm.core.scheduler import (ARTIFICIAL_PREEMPTION_MAX_CNT, | ||
ENABLE_ARTIFICIAL_PREEMPT) | ||
|
||
MODELS = [ | ||
"facebook/opt-125m", | ||
] | ||
|
||
assert ENABLE_ARTIFICIAL_PREEMPT is True, ( | ||
"Use an env var VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1. " | ||
"`VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest " | ||
"tests/basic_correctness/test_preemption.py`") | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["half"]) | ||
@pytest.mark.parametrize("max_tokens", [96]) | ||
@pytest.mark.parametrize("chunked_prefill_token_size", [16]) | ||
def test_chunked_prefill_recompute( | ||
hf_runner, | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
chunked_prefill_token_size: int, | ||
) -> None: | ||
"""Ensure that chunked prefill works with preemption.""" | ||
max_num_seqs = min(chunked_prefill_token_size, 256) | ||
enable_chunked_prefill = False | ||
max_num_batched_tokens = None | ||
if chunked_prefill_token_size != -1: | ||
enable_chunked_prefill = True | ||
max_num_batched_tokens = chunked_prefill_token_size | ||
|
||
hf_model = hf_runner(model, dtype=dtype) | ||
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) | ||
del hf_model | ||
|
||
vllm_model = vllm_runner( | ||
model, | ||
dtype=dtype, | ||
max_num_batched_tokens=max_num_batched_tokens, | ||
enable_chunked_prefill=enable_chunked_prefill, | ||
max_num_seqs=max_num_seqs, | ||
) | ||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) | ||
assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < | ||
ARTIFICIAL_PREEMPTION_MAX_CNT) | ||
del vllm_model | ||
|
||
for i in range(len(example_prompts)): | ||
hf_output_ids, hf_output_str = hf_outputs[i] | ||
vllm_output_ids, vllm_output_str = vllm_outputs[i] | ||
assert hf_output_str == vllm_output_str, ( | ||
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") | ||
assert hf_output_ids == vllm_output_ids, ( | ||
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [96]) | ||
def test_preemption( | ||
hf_runner, | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
) -> None: | ||
"""By default, recompute preemption is enabled""" | ||
|
||
hf_model = hf_runner(model, dtype=dtype) | ||
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens) | ||
del hf_model | ||
|
||
vllm_model = vllm_runner( | ||
model, | ||
dtype=dtype, | ||
) | ||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) | ||
assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < | ||
ARTIFICIAL_PREEMPTION_MAX_CNT) | ||
del vllm_model | ||
|
||
for i in range(len(example_prompts)): | ||
hf_output_ids, hf_output_str = hf_outputs[i] | ||
vllm_output_ids, vllm_output_str = vllm_outputs[i] | ||
assert hf_output_str == vllm_output_str, ( | ||
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") | ||
assert hf_output_ids == vllm_output_ids, ( | ||
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [96]) | ||
@pytest.mark.parametrize("beam_width", [4]) | ||
def test_swap( | ||
hf_runner, | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
beam_width: int, | ||
) -> None: | ||
"""Use beam search enables swapping.""" | ||
example_prompts = example_prompts[:1] | ||
hf_model = hf_runner(model, dtype=dtype) | ||
hf_outputs = hf_model.generate_beam_search(example_prompts, beam_width, | ||
max_tokens) | ||
del hf_model | ||
|
||
vllm_model = vllm_runner(model, dtype=dtype, swap_space=10) | ||
vllm_outputs = vllm_model.generate_beam_search(example_prompts, beam_width, | ||
max_tokens) | ||
assert (vllm_model.model.llm_engine.scheduler.artificial_preempt_cnt < | ||
ARTIFICIAL_PREEMPTION_MAX_CNT) | ||
del vllm_model | ||
|
||
for i in range(len(example_prompts)): | ||
hf_output_ids, _ = hf_outputs[i] | ||
vllm_output_ids, _ = vllm_outputs[i] | ||
assert len(hf_output_ids) == len(vllm_output_ids) | ||
for j in range(len(hf_output_ids)): | ||
assert hf_output_ids[j] == vllm_output_ids[j], ( | ||
f"Test{i} output{j}:\nHF: {hf_output_ids}\n" | ||
f"vLLM: {vllm_output_ids}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters