-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #153 from myushen/master
dev script for connecting cellxgene to census
- Loading branch information
Showing
1 changed file
with
168 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# R Script for Processing Sample Metadata in Cellxgene Data | ||
# This script processes sample metadata related to Cellxgene datasets, focusing on Homo sapiens data. | ||
# It filters datasets based on certain criteria like primary data, accepted assays, and large sample size thresholds. | ||
# Additionally, it modifies cell identifiers and merges this information with related datasets to generate final outputs for further analysis. | ||
# The script employs several R packages like arrow, targets, glue, dplyr, and more for data manipulation and storage operations. | ||
|
||
|
||
library(arrow) | ||
library(targets) | ||
library(glue) | ||
library(dplyr) | ||
library(cellxgene.census) | ||
library(stringr) | ||
library(purrr) | ||
result_directory = "/vast/projects/cellxgene_curated/metadata_cellxgenedp_Apr_2024" | ||
# # Sample metadata | ||
# sample_meta <- tar_read(metadata_dataset_id_common_sample_columns, store = glue("{result_directory}/_targets")) | ||
# saveRDS(sample_meta, "~/scratch/Census/cellxgene_to_census/sample_meta.rds") | ||
sample_meta <- readRDS("~/scratch/Census/cellxgene_to_census/sample_meta.rds") | ||
|
||
# Sample to cell link | ||
sample_to_cell <- tar_read(metadata_dataset_id_cell_to_sample_mapping, store = glue("{result_directory}/_targets")) | ||
sample_to_cell_primary <- sample_to_cell |> filter(is_primary_data == TRUE) | ||
#saveRDS(sample_to_cell_primary, "~/scratch/Census/cellxgene_to_census/sample_to_cell_primary.rds") | ||
sample_to_cell_primary <- readRDS("~/scratch/Census/cellxgene_to_census/sample_to_cell_primary.rds") | ||
|
||
sample_to_cell_primary_human <- sample_to_cell_primary |> | ||
left_join(sample_meta, by = c("sample_","dataset_id")) |> | ||
filter(organism == "Homo sapiens") |> | ||
select(observation_joinid, cell_, sample_, donor_id.x, dataset_id, is_primary_data.x, | ||
sample_heuristic.x, organism, tissue, development_stage, assay, collection_id, | ||
sex, self_reported_ethnicity, disease, cell_type) | ||
|
||
# accepted_assays from census | ||
accepted_assays <- read.csv("~/projects/CuratedAtlasQueryR/cellxgene-to-census/census_accepted_assays.csv", header=TRUE) | ||
sample_to_cell_primary_human_accepted_assay <- sample_to_cell_primary_human |> filter(assay %in% accepted_assays$assay) | ||
|
||
large_samples <- sample_to_cell_primary_human_accepted_assay |> | ||
dplyr::count(sample_, assay, collection_id, dataset_id) |> | ||
mutate(above_threshold = n > 15000) | ||
|
||
large_samples_collection_id <- large_samples |> ungroup() |> | ||
dplyr::count(collection_id) |> arrange(desc(n)) | ||
|
||
# function to discard nucleotide in cell_ --------------------------------- | ||
# cell pattern repeated across samples. | ||
# Decision: use modified_cell and sample_ to split data | ||
|
||
# drop cell ID if cell ID is a series of numbers | ||
# ACGT more than 5, drops | ||
# drop cellID if does not have special cahracter : - _ | ||
remove_nucleotides_and_separators <- function(x) { | ||
# convert integer cell ID or contain numerics surrounded by special characters to NA | ||
x[str_detect(x, "^[0-9:_\\-*]+$")] <- NA | ||
|
||
# drop sequence having a consistent stretch of 5 characters from ACGT | ||
modified <- str_replace_all(x, "[ACGT]{5,}", "") | ||
|
||
#remove nucleotides surrounded by optional separators | ||
modified <- str_replace_all(modified, "[:_-]{2,}", "_") | ||
} | ||
|
||
# List of collection IDs for sample cells great than 10K | ||
collection_ids <- large_samples_collection_id$collection_id | ||
|
||
process_collection <- function(id) { | ||
filtered_data <- sample_to_cell_primary_human_accepted_assay |> | ||
filter(collection_id == id) |> | ||
select(cell_, sample_) | ||
|
||
filtered_data$cell_modified <- remove_nucleotides_and_separators(filtered_data$cell_) | ||
filtered_data | ||
} | ||
|
||
final_result <- map_df(collection_ids, process_collection) | ||
|
||
# conditional generating sample_2 based on whether number of cells > 10K. | ||
sample_to_cell_primary_human_accepted_assay <- sample_to_cell_primary_human_accepted_assay |> | ||
left_join(large_samples, by = c("sample_", "assay","collection_id","dataset_id")) | ||
|
||
sample_to_cell_primary_human_accepted_assay_sample_2 <- | ||
sample_to_cell_primary_human_accepted_assay |> | ||
left_join(final_result, by = c("cell_","sample_")) |> | ||
# manual adjust | ||
mutate( | ||
cell_modified = ifelse(dataset_id == "b2dda353-0c96-42df-8dcd-1ea7429a6feb" & sample_ == "5951a81f1d40153bab5d2b808e384f39", | ||
"s14", | ||
cell_modified), | ||
cell_modified = ifelse(dataset_id == "b2dda353-0c96-42df-8dcd-1ea7429a6feb" & sample_ == "7313173de022921da50c34ea2f87c7af", | ||
"s3", | ||
cell_modified) | ||
) |> | ||
mutate(sample_2 = if_else(above_threshold, | ||
paste(sample_, cell_modified, sep = "___"), | ||
sample_) | ||
) | ||
# save result | ||
#sample_to_cell_primary_human_accepted_assay_sample_2 |> arrow::write_parquet("~/scratch/Census_rerun/sample_to_cell_primary_human_accepted_assay_sample_2_modify.parquet") | ||
|
||
# Load Census census_version = "2024-07-01" | ||
census <- open_soma(census_version = "stable") | ||
metadata <- census$get("census_data")$get("homo_sapiens")$get("obs") | ||
selected_columns <- c('assay', 'disease', 'donor_id', 'sex', 'self_reported_ethnicity', 'tissue', 'development_stage','is_primary_data','dataset_id','observation_joinid', | ||
"cell_type", "cell_type_ontology_term_id") | ||
samples <- metadata$read(column_names = selected_columns, | ||
value_filter = "is_primary_data == 'TRUE'")$concat() | ||
samples <- samples |> as.data.frame() |> distinct() | ||
#samples |> saveRDS("~/scratch/Census/cellxgene_to_census/census_samples_701.rds") | ||
|
||
######## READ | ||
sample_to_cell_primary_human_accepted_assay_sample_2 <- arrow::read_parquet("~/scratch/Census_rerun/sample_to_cell_primary_human_accepted_assay_sample_2.parquet") | ||
samples <- readRDS("~/scratch/Census/cellxgene_to_census/census_samples_701.rds") | ||
|
||
census_samples_to_download <- samples |> | ||
left_join(sample_to_cell_primary_human_accepted_assay_sample_2, | ||
by = c("observation_joinid", "dataset_id"), | ||
relationship = "many-to-many") |> | ||
select(-donor_id.x, | ||
-is_primary_data.x, | ||
-tissue.y, | ||
-development_stage.y, | ||
-assay.y, | ||
-sex.y, | ||
-self_reported_ethnicity.y, | ||
-disease.y) |> | ||
rename(assay = assay.x, | ||
disease = disease.x, | ||
sex = sex.x, | ||
self_reported_ethnicity = self_reported_ethnicity.x, | ||
tissue = tissue.x, | ||
development_stage = development_stage.x | ||
) |> | ||
as_tibble() |> | ||
# remove space in the sample_2, as sample_2 will be regarded as filename | ||
mutate(sample_2 = if_else(str_detect(sample_2, " "), str_replace_all(sample_2, " ",""), sample_2)) | ||
|
||
#census_samples_to_download |> arrow::write_parquet("~/scratch/Census_rerun/census_samples_to_download.parquet") | ||
con <- duckdb::dbConnect(duckdb::duckdb(), dbdir = ":memory:") | ||
parquet_file = "~/scratch/Census_rerun/census_samples_to_download.parquet" | ||
|
||
census_samples_to_download <- tbl(con, sql(paste0("SELECT * FROM read_parquet('", parquet_file, "')"))) | ||
|
||
# This is important: please make sure observation_joinid and cell_ is unique per sample (sample_2) in census_samples_to_download | ||
census_samples_to_download |> dplyr::count(observation_joinid, sample_2) |> dplyr::count(n) | ||
census_samples_to_download |> dplyr::count(cell_, sample_2) |> dplyr::count(n) | ||
|
||
|
||
census_samples_to_download |> group_by(dataset_id, sample_2) |> | ||
summarise(observation_joinid = list(observation_joinid), .groups = "drop") |> as_tibble() |> mutate(list_length = map_dbl(observation_joinid, length)) |> | ||
filter(list_length >=100) |> | ||
arrow::write_parquet("~/scratch/Census_rerun/census_samples_to_download_groups.parquet") | ||
|
||
census_samples_to_download_groups <- arrow::read_parquet("~/scratch/Census_rerun/census_samples_to_download_groups.parquet") | ||
|
||
|
||
|
||
|
||
# # census metadata | ||
# files <- readRDS("~/git_control/HPCell/data/files_3.rds") | ||
# metadata <- files |> left_join(census_samples_to_download, by = c("dataset_id", "sample_2")) |> filter(cell_number != 0) | ||
# | ||
# # write to parquet | ||
# metadata |> filter(is_primary_data == TRUE) |> select(-transformation_function) |> | ||
# arrow::write_parquet("~/cellxgene_curated/census_samples/primary_metatadata.parquet") | ||
# | ||
# # Calculate stats | ||
# metadata |> filter(!is.na(is_primary_data), cell_number != 0) |> distinct(dataset_id) | ||
|