About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Scale a double-precision complex floating-point vector by a double-precision complex floating-point constant and add the result to a double-precision complex floating-point vector.
npm install @stdlib/blas-base-zaxpy
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var zaxpy = require( '@stdlib/blas-base-zaxpy' );
Scales values from x
by alpha
and adds the result to y
.
var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = new Complex128( 2.0, 2.0 );
zaxpy( 3, alpha, x, 1, y, 1 );
// y => <Complex128Array>[ -1.0, 7.0, -1.0, 15.0, -1.0, 23.0 ]
The function has the following parameters:
- N: number of indexed elements.
- alpha: scalar
Complex128
constant. - x: first input
Complex128Array
. - strideX: stride length for
x
. - y: second input
Complex128Array
. - strideY: stride length for
y
.
The N
and stride parameters determine how elements from x
are scaled by alpha
and added to y
. For example, to scale every other element in x
by alpha
and add the result to every other element of y
,
var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = new Complex128( 2.0, 2.0 );
zaxpy( 2, alpha, x, 2, y, 2 );
// y => <Complex128Array>[ -1.0, 7.0, 1.0, 1.0, -1.0, 23.0, 1.0, 1.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
// Initial arrays...
var x0 = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y0 = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
// Define a scalar constant:
var alpha = new Complex128( 2.0, 2.0 );
// Create offset views...
var x1 = new Complex128Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Complex128Array( y0.buffer, y0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
// Perform operation:
zaxpy( 2, alpha, x1, 1, y1, 1 );
// y0 => <Complex128Array>[ 1.0, 1.0, 1.0, 1.0, -1.0, 15.0, -1.0, 23.0 ]
Scales values from x
by alpha
and adds the result to y
using alternative indexing semantics.
var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = new Complex128( 2.0, 2.0 );
zaxpy.ndarray( 3, alpha, x, 1, 0, y, 1, 0 );
// y => <Complex128Array>[ -1.0, 7.0, -1.0, 15.0, -1.0, 23.0 ]
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to scale elements in the first input strided array starting from the second element and add the result to the second input array starting from the second element,
var Complex128Array = require( '@stdlib/array-complex128' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var x = new Complex128Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
var y = new Complex128Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = new Complex128( 2.0, 2.0 );
zaxpy.ndarray( 3, alpha, x, 1, 1, y, 1, 1 );
// y => <Complex128Array>[ 1.0, 1.0, -1.0, 15.0, -1.0, 23.0, -1.0, 31.0 ]
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var zcopy = require( '@stdlib/blas-base-zcopy' );
var zeros = require( '@stdlib/array-zeros' );
var logEach = require( '@stdlib/console-log-each' );
var zaxpy = require( '@stdlib/blas-base-zaxpy' );
function rand() {
return new Complex128( discreteUniform( 0, 10 ), discreteUniform( -5, 5 ) );
}
var x = filledarrayBy( 10, 'complex128', rand );
var y = filledarrayBy( 10, 'complex128', rand );
var yc1 = zcopy( y.length, y, 1, zeros( y.length, 'complex128' ), 1 );
var alpha = new Complex128( 2.0, 2.0 );
// Perform operation:
zaxpy( x.length, alpha, x, 1, yc1, 1 );
// Print the results:
logEach( '(%s)*(%s) + (%s) = %s', alpha, x, y, yc1 );
var yc2 = zcopy( y.length, y, 1, zeros( y.length, 'complex128' ), 1 );
// Perform operation using alternative indexing semantics:
zaxpy.ndarray( x.length, alpha, x, 1, 0, yc2, 1, 0 );
// Print the results:
logEach( '(%s)*(%s) + (%s) = %s', alpha, x, y, yc2 );
#include "stdlib/blas/base/zaxpy.h"
Scales values from X
by alpha
and adds the result to Y
.
#include "stdlib/complex/float64/ctor.h"
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
double y[] = { -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0 };
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );
c_zaxpy( 4, alpha, (void *)x, 1, (void *)y, 1 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - alpha:
[in] stdlib_complex128_t
scalar constant. - X:
[in] void*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - Y:
[inout] void*
output array. - strideY:
[in] CBLAS_INT
stride length forY
.
void c_zaxpy( const CBLAS_INT N, const stdlib_complex128_t alpha, const void *X, const CBLAS_INT strideX, void *Y, const CBLAS_INT strideY );
Scales values from X
by alpha
and adds the result to Y
using alternative indexing semantics.
#include "stdlib/complex/float64/ctor.h"
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
double y[] = { -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0 };
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );
c_zaxpy_ndarray( 4, alpha, (void *)x, 1, 0, (void *)y, 1, 0 );
The function accepts the following arguments:
- N:
[in] CBLAS_INT
number of indexed elements. - alpha:
[in] stdlib_complex128_t
scalar constant. - X:
[in] void*
input array. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - Y:
[inout] void*
output array. - strideY:
[in] CBLAS_INT
stride length forY
. - offsetY:
[in] CBLAS_INT
starting index forY
.
void c_zaxpy_ndarray( const CBLAS_INT N, const stdlib_complex128_t alpha, const void *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, void *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY );
#include "stdlib/blas/base/zaxpy.h"
#include "stdlib/complex/float64/ctor.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
double y[] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
// Create a complex scalar:
const stdlib_complex128_t alpha = stdlib_complex128( 2.0, 2.0 );
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 1;
const int strideY = 1;
// Perform operation:
c_zaxpy( N, alpha, (void *)x, strideX, (void *)y, strideY );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "zaxpy[ %i ] = %lf + %lfj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
}
// Perform operation using alternative indexing semantics:
c_zaxpy_ndarray( N, alpha, (void *)x, strideX, 0, (void *)y, strideY, 0 );
// Print the result:
for ( int i = 0; i < N; i++ ) {
printf( "zaxpy[ %i ] = %lf + %lfj\n", i, y[ i*2 ], y[ (i*2)+1 ] );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.