PyTorch implementation of SlowFast Networks for Video Recognition (arxiv).
Download dataset with Kinetics downloader. For example, you could run:
cd Kinetics-downloader
python download.py data/kinetics-100-pruned_train.csv /data/kinetics-100/train/ -n 16 -t /data/kinetics-100/tmp/
Place .csv
file under data directory, and rename as train.csv
or val.csv
.
You also need classes.csv
.
cp Kinetics-downloader/data/kinetics-100-pruned_train.csv /data/kinetics-100/train.csv
cp Kinetics-downloader/data/kinetics-100-classes.csv /data/kinetics-100/classes.csv
Create and start new Anaconda environment.
conda create -n slowfast python=3.9
conda activate slowfast
Install pre-requisites.
pip install -r requirements.txt
Add this repository to $PYTHONPATH.
export PYTHONPATH=/path/to/SlowFast/:$PYTHONPATH
Configure, and run training.
vi SlowFast/slowfast/
python tools/train.py