Skip to content

starpiens/SlowFast

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SlowFast

PyTorch implementation of SlowFast Networks for Video Recognition (arxiv).

Preparing Kinetics Dataset

Download dataset with Kinetics downloader. For example, you could run:

cd Kinetics-downloader
python download.py data/kinetics-100-pruned_train.csv /data/kinetics-100/train/ -n 16 -t /data/kinetics-100/tmp/

Place .csv file under data directory, and rename as train.csv or val.csv. You also need classes.csv.

cp Kinetics-downloader/data/kinetics-100-pruned_train.csv /data/kinetics-100/train.csv
cp Kinetics-downloader/data/kinetics-100-classes.csv /data/kinetics-100/classes.csv

Setup

Create and start new Anaconda environment.

conda create -n slowfast python=3.9
conda activate slowfast

Install pre-requisites.

pip install -r requirements.txt

Add this repository to $PYTHONPATH.

export PYTHONPATH=/path/to/SlowFast/:$PYTHONPATH

Run

Configure, and run training.

vi SlowFast/slowfast/
python tools/train.py