Skip to content

starmemda/MlTr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 

Repository files navigation

MlTr: Multi-label Classification with Transformer

This is official implement of "MlTr: Multi-label Classification with Transformer".

Abstract

The task of multi-label image classification is to recognize all the object labels presented in an image. Though advancing for years, small objects, similar objects and objects with high conditional probability are still the main bottlenecks of previous convolutional neural network(CNN) based models, limited by convolutional kernels' representational capacity. Recent vision transformer networks utilize the self-attention mechanism to extract the feature of pixel granularity, which expresses richer local semantic information, while is insufficient for mining global spatial dependence. In this paper, we point out the three crucial problems that CNN-based methods encounter and explore the possibility of conducting specific transformer modules to settle them. We put forward a Multi-label Transformer architecture(MlTr) constructed with windows partitioning, in-window pixel attention, cross-window attention, particularly improving the performance of multi-label image classification tasks. The proposed MlTr shows state-of-the-art results on various prevalent multi-label datasets such as MS-COCO, Pascal-VOC, and NUS-WIDE with 88.5%, 95.8%, and 65.5% respectively.

Pretrained model (Results on MS-COCO2014)

name resolution map params(M) model log
mltr-s 224x224 81.9 33 coming soon coming soon
mltr-m 384x384 86.8 62 coming soon coming soon
mltr-l 384x384 88.5 108 coming soon coming soon

Citing artical

Pleadse cite this article as:

@misc{cheng2021mltr,
      title={MlTr: Multi-label Classification with Transformer}, 
      author={Xing Cheng and Hezheng Lin and Xiangyu Wu and Fan Yang and Dong Shen and Zhongyuan Wang and Nian Shi and Honglin Liu},
      year={2021},
      eprint={2106.06195},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Started

Please refer to get_started.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published