-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
96 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
import mxnet as mx | ||
import os, sys | ||
from collections import namedtuple | ||
|
||
ConvExecutor = namedtuple('ConvExecutor', ['executor', 'data', 'data_grad', 'style', 'content', 'arg_dict']) | ||
|
||
def get_vgg_symbol(prefix, content_only=False): | ||
# declare symbol | ||
data = mx.sym.Variable("%s_data" % prefix) | ||
conv1_1 = mx.symbol.Convolution(name='%s_conv1_1' % prefix, data=data , num_filter=64, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu1_1 = mx.symbol.Activation(data=conv1_1 , act_type='relu') | ||
conv1_2 = mx.symbol.Convolution(name='%s_conv1_2' % prefix, data=relu1_1 , num_filter=64, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu1_2 = mx.symbol.Activation(data=conv1_2 , act_type='relu') | ||
pool1 = mx.symbol.Pooling(data=relu1_2 , pad=(0,0), kernel=(2,2), stride=(2,2), pool_type='avg') | ||
conv2_1 = mx.symbol.Convolution(name='%s_conv2_1' % prefix, data=pool1 , num_filter=128, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu2_1 = mx.symbol.Activation(data=conv2_1 , act_type='relu') | ||
conv2_2 = mx.symbol.Convolution(name='%s_conv2_2' % prefix, data=relu2_1 , num_filter=128, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu2_2 = mx.symbol.Activation(data=conv2_2 , act_type='relu') | ||
pool2 = mx.symbol.Pooling(data=relu2_2 , pad=(0,0), kernel=(2,2), stride=(2,2), pool_type='avg') | ||
conv3_1 = mx.symbol.Convolution(name='%s_conv3_1' % prefix, data=pool2 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu3_1 = mx.symbol.Activation(data=conv3_1 , act_type='relu') | ||
conv3_2 = mx.symbol.Convolution(name='%s_conv3_2' % prefix, data=relu3_1 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu3_2 = mx.symbol.Activation(data=conv3_2 , act_type='relu') | ||
conv3_3 = mx.symbol.Convolution(name='%s_conv3_3' % prefix, data=relu3_2 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu3_3 = mx.symbol.Activation(data=conv3_3 , act_type='relu') | ||
conv3_4 = mx.symbol.Convolution(name='%s_conv3_4' % prefix, data=relu3_3 , num_filter=256, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu3_4 = mx.symbol.Activation(data=conv3_4 , act_type='relu') | ||
pool3 = mx.symbol.Pooling(data=relu3_4 , pad=(0,0), kernel=(2,2), stride=(2,2), pool_type='avg') | ||
conv4_1 = mx.symbol.Convolution(name='%s_conv4_1' % prefix, data=pool3 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu4_1 = mx.symbol.Activation(data=conv4_1 , act_type='relu') | ||
conv4_2 = mx.symbol.Convolution(name='%s_conv4_2' % prefix, data=relu4_1 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu4_2 = mx.symbol.Activation(data=conv4_2 , act_type='relu') | ||
conv4_3 = mx.symbol.Convolution(name='%s_conv4_3' % prefix, data=relu4_2 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu4_3 = mx.symbol.Activation(data=conv4_3 , act_type='relu') | ||
conv4_4 = mx.symbol.Convolution(name='%s_conv4_4' % prefix, data=relu4_3 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu4_4 = mx.symbol.Activation(data=conv4_4 , act_type='relu') | ||
pool4 = mx.symbol.Pooling(data=relu4_4 , pad=(0,0), kernel=(2,2), stride=(2,2), pool_type='avg') | ||
conv5_1 = mx.symbol.Convolution(name='%s_conv5_1' % prefix, data=pool4 , num_filter=512, pad=(1,1), kernel=(3,3), stride=(1,1), workspace=1024) | ||
relu5_1 = mx.symbol.Activation(data=conv5_1 , act_type='relu') | ||
|
||
|
||
if content_only: | ||
return relu4_2 | ||
# style and content layers | ||
style = mx.sym.Group([relu1_1, relu2_1, relu3_1, relu4_1, relu5_1]) | ||
content = mx.sym.Group([relu4_2]) | ||
return style, content | ||
|
||
|
||
def get_executor_with_style(style, content, input_size, ctx): | ||
out = mx.sym.Group([style, content]) | ||
# make executor | ||
arg_shapes, output_shapes, aux_shapes = out.infer_shape(data=(1, 3, input_size[0], input_size[1])) | ||
arg_names = out.list_arguments() | ||
arg_dict = dict(zip(arg_names, [mx.nd.zeros(shape, ctx=ctx) for shape in arg_shapes])) | ||
grad_dict = {"data": arg_dict["data"].copyto(ctx)} | ||
# init with pretrained weight | ||
pretrained = mx.nd.load("./model/vgg19.params") | ||
for name in arg_names: | ||
if name == "data": | ||
continue | ||
key = "arg:" + name | ||
if key in pretrained: | ||
pretrained[key].copyto(arg_dict[name]) | ||
else: | ||
print("Skip argument %s" % name) | ||
executor = out.bind(ctx=ctx, args=arg_dict, args_grad=grad_dict, grad_req="write") | ||
return ConvExecutor(executor=executor, | ||
data=arg_dict["data"], | ||
data_grad=grad_dict["data"], | ||
style=executor.outputs[:-1], | ||
content=executor.outputs[-1], | ||
arg_dict=arg_dict) | ||
|
||
def get_executor_content(content, input_size, ctx): | ||
arg_shapes, output_shapes, aux_shapes = content.infer_shape(data=(1, 3, input_size[0], input_size[1])) | ||
arg_names = out.list_arguments() | ||
arg_dict = dict(zip(arg_names, [mx.nd.zeros(shape, ctx=ctx) for shape in arg_shapes])) | ||
pretrained = mx.nd.load("./model/vgg19.params") | ||
for name in arg_names: | ||
if name == "data": | ||
continue | ||
key = "arg:" + name | ||
if key in pretrained: | ||
pretrained[key].copyto(arg_dict[name]) | ||
else: | ||
print("Skip argument %s" % name) | ||
executor = out.bind(ctx=ctx, args=arg_dict, args_grad=[], grad_req="null") | ||
return ConvExecutor(executor=executor, | ||
data=arg_dict["data"], | ||
data_grad=None, | ||
style=None, | ||
content=executor.outputs[0], | ||
arg_dict=arg_dict) | ||
|
||
|