Skip to content
This repository was archived by the owner on Jun 5, 2025. It is now read-only.

Modify to use GPU (if available) for embedding #1064

Merged
merged 1 commit into from
Feb 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion scripts/import_packages.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import numpy as np
import sqlite_vec_sl_tmp

from codegate.config import Config
from codegate.inference.inference_engine import LlamaCppInferenceEngine
from codegate.utils.utils import generate_vector_string

Expand Down Expand Up @@ -55,7 +56,9 @@ def setup_schema(self):

async def process_package(self, package):
vector_str = generate_vector_string(package)
vector = await self.inference_engine.embed(self.model_path, [vector_str])
vector = await self.inference_engine.embed(
self.model_path, [vector_str], n_gpu_layers=Config.get_config().chat_model_n_gpu_layers
)
vector_array = np.array(vector[0], dtype=np.float32)

cursor = self.conn.cursor()
Expand Down
30 changes: 23 additions & 7 deletions src/codegate/inference/inference_engine.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,13 @@
from typing import Iterator, List, Union

import structlog
from llama_cpp import Llama
from llama_cpp import (
CreateChatCompletionResponse,
CreateChatCompletionStreamResponse,
CreateCompletionResponse,
CreateCompletionStreamResponse,
Llama,
)

logger = structlog.get_logger("codegate")

Expand Down Expand Up @@ -35,7 +43,9 @@ def _close_models(self):
model._sampler.close()
model.close()

async def __get_model(self, model_path, embedding=False, n_ctx=512, n_gpu_layers=0) -> Llama:
async def __get_model(
self, model_path: str, embedding: bool = False, n_ctx: int = 512, n_gpu_layers: int = 0
) -> Llama:
"""
Returns Llama model object from __models if present. Otherwise, the model
is loaded and added to __models and returned.
Expand All @@ -55,7 +65,9 @@ async def __get_model(self, model_path, embedding=False, n_ctx=512, n_gpu_layers

return self.__models[model_path]

async def complete(self, model_path, n_ctx=512, n_gpu_layers=0, **completion_request):
async def complete(
self, model_path: str, n_ctx: int = 512, n_gpu_layers: int = 0, **completion_request
) -> Union[CreateCompletionResponse, Iterator[CreateCompletionStreamResponse]]:
"""
Generates a chat completion using the specified model and request parameters.
"""
Expand All @@ -64,7 +76,9 @@ async def complete(self, model_path, n_ctx=512, n_gpu_layers=0, **completion_req
)
return model.create_completion(**completion_request)

async def chat(self, model_path, n_ctx=512, n_gpu_layers=0, **chat_completion_request):
async def chat(
self, model_path: str, n_ctx: int = 512, n_gpu_layers: int = 0, **chat_completion_request
) -> Union[CreateChatCompletionResponse, Iterator[CreateChatCompletionStreamResponse]]:
"""
Generates a chat completion using the specified model and request parameters.
"""
Expand All @@ -73,18 +87,20 @@ async def chat(self, model_path, n_ctx=512, n_gpu_layers=0, **chat_completion_re
)
return model.create_chat_completion(**chat_completion_request)

async def embed(self, model_path, content):
async def embed(self, model_path: str, content: List[str], n_gpu_layers=0) -> List[List[float]]:
"""
Generates an embedding for the given content using the specified model.
"""
logger.debug(
"Generating embedding",
model=model_path.split("/")[-1],
content=content,
content=content[0][0 : min(100, len(content[0]))],
content_length=len(content[0]) if content else 0,
)

model = await self.__get_model(model_path=model_path, embedding=True)
model = await self.__get_model(
model_path=model_path, embedding=True, n_gpu_layers=n_gpu_layers
)
embedding = model.embed(content)

logger.debug(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,9 @@ async def compute_embeddings(self, phrases):
Returns:
torch.Tensor: Tensor of embeddings.
"""
embeddings = await self.inference_engine.embed(self.model_path, phrases)
embeddings = await self.inference_engine.embed(
self.model_path, phrases, n_gpu_layers=Config.get_config().chat_model_n_gpu_layers
)
return embeddings

async def classify_phrase(self, phrase, embeddings=None):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,9 @@ async def train(self, phrases, labels):
phrases (list of str): List of phrases to train on.
labels (list of int): Corresponding labels for the phrases.
"""
embeds = await self.inference_engine.embed(self.model_path, phrases)
embeds = await self.inference_engine.embed(
self.model_path, phrases, n_gpu_layers=Config.get_config().chat_model_n_gpu_layers
)
if isinstance(embeds[0], list):
embedding_dim = len(embeds[0])
else:
Expand Down
6 changes: 5 additions & 1 deletion src/codegate/storage/storage_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,11 @@ async def search(

elif query:
# Generate embedding for the query
query_vector = await self.inference_engine.embed(self.model_path, [query])
query_vector = await self.inference_engine.embed(
self.model_path,
[query],
n_gpu_layers=Config.get_config().chat_model_n_gpu_layers,
)
query_embedding = np.array(query_vector[0], dtype=np.float32)
query_embedding_bytes = query_embedding.tobytes()

Expand Down