-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryTreeLevelOrderTraversal.java
96 lines (87 loc) · 3.81 KB
/
BinaryTreeLevelOrderTraversal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
package Algorithms.BinaryTrees;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
/**
* @author Srinivas Vadige, srinivas.vadige@gmail.com
* @since 19 Jan 2023
*/
public class BinaryTreeLevelOrderTraversal {
static class TreeNode {int val;TreeNode left, right;TreeNode() {}TreeNode(int val) { this.val = val; }TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}}
public static void main(String[] args) {
TreeNode root = new TreeNode(3);
root.left = new TreeNode(9);
root.right = new TreeNode(20);
root.right.left = new TreeNode(15);
root.right.right = new TreeNode(7);
// Input: root = [3,9,20,null,null,15,7]
// Output: [[3],[9,20],[15,7]]
/*
3
/ \
9 20
/ \
15 7
*/
System.out.println("levelOrderUsingLevelSizeForLoop: " + levelOrderUsingLevelSizeForLoop(root));
System.out.println("levelOrderUsingDummyNodeSeparator: " + levelOrderUsingDummyNodeSeparator(root));
System.out.println("levelOrderUsingRecursion: " + levelOrderUsingRecursion(root));
}
public static List<List<Integer>> levelOrderUsingLevelSizeForLoop(TreeNode root) { // level size is different and level is different
List<List<Integer>> lst = new ArrayList<>();
if(root == null) return lst;
Queue<TreeNode> q = new LinkedList<>();
q.add(root);
while(!q.isEmpty()) {
int size = q.size();
List<Integer> subLst = new ArrayList<>();
for(int i=0; i<size; i++) {
TreeNode node = q.poll();
subLst.add(node.val);
if(node.left != null) q.add(node.left);
if(node.right != null) q.add(node.right);
}
lst.add(subLst);
}
return lst;
}
public static List<List<Integer>> levelOrderUsingDummyNodeSeparator(TreeNode root) {
List<List<Integer>> lst = new ArrayList<>();
if(root == null) return lst;
List<Integer> subLst = new ArrayList<>();
Queue<TreeNode> q = new LinkedList<>();
q.add(root);
q.add(new TreeNode(0, root, root));
while(!q.isEmpty()) {
TreeNode node = q.poll();
if (node != null && node.left == root) {
lst.add(subLst);
subLst = new ArrayList<>();
if (!q.isEmpty()) q.add(new TreeNode(0, root, root));
} else {
subLst.add(node.val);
if (node.left != null) q.add(node.left);
if (node.right != null) q.add(node.right);
}
}
return lst;
}
public static List<List<Integer>> levelOrderUsingRecursion(TreeNode root) {
List<List<Integer>> lst =new ArrayList<>();
dfsPreOrder(root, 0, lst);
return lst;
}
// Note that the level starts with 1 but here we start with 0. And finally list.size() == level+1 in this case. That's how if(lst.size()==level) works
public static void dfsPreOrder(TreeNode node, int level, List<List<Integer>> lst) { // level == subLst position == index in lst
if(node==null) return; // base case for leaf node
if(lst.size()==level) { // when we're new to to that specific level i.e we haven't added anything to that level / index in the lst i.e the node.left creates the new index in lst
List<Integer> subLst =new ArrayList<>();
subLst.add(node.val);
lst.add(subLst);
}
else lst.get(level).add(node.val); // if we already visited that level
dfsPreOrder(node.left, level+1, lst);
dfsPreOrder(node.right, level+1, lst);
}
}