You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#' Estimate Zero Truncated Poisson Parameters#'#' @family Parameter Estimation#' @family Poisson#'#' @author Steven P. Sanderson II, MPH#'#' @details#'#' This function estimates the parameter lambda of a Zero-Truncated Poisson distribution#' based on a vector of non-negative integer values `.x`. The Zero-Truncated Poisson#' distribution is a discrete probability distribution that models the number of events#' occurring in a fixed interval of time, given that at least one event has occurred.#'#' The estimation is performed by minimizing the negative log-likelihood of the observed#' data `.x` under the Zero-Truncated Poisson model. The negative log-likelihood function#' used for optimization is defined as:#'#' \deqn{-\sum_{i=1}^{n} \log(P(X_i = x_i \mid X_i > 0, \lambda))}{,}#'#' where \( X_i \) are the observed values in `.x` and \( \lambda \) is the parameter#' of the Zero-Truncated Poisson distribution.#'#' The optimization process uses the `optim` function to find the value of \( \lambda \)#' that minimizes this negative log-likelihood. The chosen optimization method is Brent's#' method (`method = "Brent"`) within a specified interval `[0, max(.x)]`.#'#' If `.auto_gen_empirical` is set to `TRUE`, the function will generate empirical data#' statistics using `tidy_empirical()` for the input data `.x` and then combine this#' empirical data with the estimated Zero-Truncated Poisson distribution using#' `tidy_combine_distributions()`. This combined data can be accessed via the#' `$combined_data_tbl` element of the function output.#'#' The function returns a tibble containing the estimated parameter \( \lambda \) along#' with other summary statistics of the input data (sample size, minimum, maximum).#'#' @description This function will attempt to estimate the Zero Truncated Poisson#' lambda parameter given some vector of values `.x`. The function will return a#' tibble output, and if the parameter `.auto_gen_empirical` is set to `TRUE`#' then the empirical data given to the parameter `.x` will be run through the#' `tidy_empirical()` function and combined with the estimated Zero Truncated#' Poisson data.#'#' @param .x The vector of data to be passed to the function. Must be non-negative#' integers.#' @param .auto_gen_empirical This is a boolean value of TRUE/FALSE with default#' set to TRUE. This will automatically create the `tidy_empirical()` output#' for the `.x` parameter and use the `tidy_combine_distributions()`. The user#' can then plot out the data using `$combined_data_tbl` from the function output.#'#' @examples#' library(dplyr)#' library(ggplot2)#'#' tc <- tidy_zero_truncated_poisson() |> pull(y)#' output <- util_zero_truncated_poissson_param_estimate(tc)#'#' output$parameter_tbl#'#' output$combined_data_tbl |>#' tidy_combined_autoplot()#'#' @return#' A tibble/list#'#' @name util_zero_truncated_poissson_param_estimateNULL#' @export#' @rdname util_zero_truncated_poissson_param_estimateutil_zero_truncated_poissson_param_estimate<-function(.x, .auto_gen_empirical=TRUE) {
# Tidyeval ----x_term<- as.numeric(.x)
minx<- min(x_term)
maxx<- max(x_term)
n<- length(x_term)
# Define negative log-likelihood functionneg_loglik<-function(lambda, data) {
-sum(log(actuar::dztpois(x_term, lambda=lambda)))
}
# Optimize to find lambda that minimizes negative log-likelihoodoptim_result<-stats::optim(par=1, fn=neg_loglik, data=x_term,
method="Brent",
lower=0, upper= max(x))
# Extract estimated lambdalambda_est<-optim_result$par# Return Tibble ----if (.auto_gen_empirical) {
te<- tidy_empirical(.x=x_term)
td<- tidy_zero_truncated_poisson(.n=n, .lambda= round(lambda_est, 3))
combined_tbl<- tidy_combine_distributions(te, td)
}
# Return Tibbleret<-dplyr::tibble(
dist_type="Zero Truncated Poisson",
samp_size=n,
min=minx,
max=maxx,
lambda=lambda_est
)
# Return ----
attr(ret, "tibble_type") <-"parameter_estimation"
attr(ret, "family") <-"zero truncated poisson"
attr(ret, "x_term") <-.x
attr(ret, "n") <-nif (.auto_gen_empirical) {
output<-list(
combined_data_tbl=combined_tbl,
parameter_tbl=ret
)
} else {
output<-list(
parameter_tbl=ret
)
}
return(output)
}
#' Calculate Akaike Information Criterion (AIC) for zero-truncated poisson Distribution#'#' This function calculates the Akaike Information Criterion (AIC) for a zero-truncated poisson distribution fitted to the provided data.#'#' @family Utility#' @author Steven P. Sanderson II, MPH#'#' @description#' This function estimates the parameters of a zero-truncated poisson distribution from the provided data using maximum likelihood estimation,#' and then calculates the AIC value based on the fitted distribution.#'#' @param .x A numeric vector containing the data to be fitted to a zero-truncated poisson distribution.#'#' @examples#' library(actuar)#'#' # Example 1: Calculate AIC for a sample dataset#' set.seed(123)#' x <- rztpois(30, lambda = 3)#' util_zero_truncated_poisson_aic(x)#'#' @return#' The AIC value calculated based on the fitted zero-truncated poisson distribution to the provided data.#'#' @name util_zero_truncated_poisson_aicNULL#' @export#' @rdname util_zero_truncated_poisson_aicutil_zero_truncated_poisson_aic<-function(.x) {
# Validate inputif (!is.numeric(.x) || any(!is.na(.x) &.x!= as.integer(.x)) || any(.x<0)) {
stop("Input data (.x) must be a numeric vector of non-negative integers.")
}
x<- as.numeric(.x)
# Get initial parameter estimates using TidyDensity package (if available)pe<-TidyDensity::util_zero_truncated_poisson_param_estimate(x)$parameter_tbl# Negative log-likelihood function for zero-truncated poisson distributionnll<-function(par, data) {
lambda<-par[1]
-sum(actuar::dztpois(data, lambda=lambda, log=TRUE))
}
# Fit zero-truncated poisson distribution to sample data (optimization)fit_ztp<-stats::optim(
pe$lambda,
nll,
data=x,
method="Brent",
lower=0,
upper=1000
)
# Extract log-likelihood and number of parameterslogLik_ztp<--fit_ztp$valuek_ztp<- length(pe) # Number of parameters for zero-truncated poisson distribution (degrees of freedom and ncp)# Calculate AICAIC_ztp<-2*k_ztp-2*logLik_ztp# Return AIC valuereturn(AIC_ztp)
}
#' Distribution Statistics#'#' @family Poisson#' @family Zero Truncated#' @family Distribution Statistics#'#' @author Steven P. Sanderson II, MPH#'#' @details This function will take in a tibble and returns the statistics#' of the given type of `tidy_` distribution. It is required that data be#' passed from a `tidy_` distribution function.#'#' @description Returns distribution statistics in a tibble.#'#' @param .data The data being passed from a `tidy_` distribution function.#'#' @examples#' library(dplyr)#'#' tidy_zero_truncated_poisson() |>#' util_zero_truncated_poisson_stats_tbl() |>#' glimpse()#'#' @return#' A tibble#'#' @name util_zero_truncated_poisson_stats_tblNULL#' @export#' @rdname util_zero_truncated_poisson_stats_tblutil_zero_truncated_poisson_stats_tbl<-function(.data) {
# Immediate check for tidy_ distribution functionif (!"tibble_type"%in% names(attributes(.data))) {
rlang::abort(
message="You must pass data from the 'tidy_dist' function.",
use_cli_format=TRUE
)
}
if (attributes(.data)$tibble_type!="tidy_zero_truncated_poisson") {
rlang::abort(
message="You must use 'tidy_zero_truncated_poisson()'",
use_cli_format=TRUE
)
}
# Datadata_tbl<-dplyr::as_tibble(.data)
atb<- attributes(data_tbl)
l<-atb$.lambdastat_mean<-lstat_mode<- floor(l)
stat_sd<- sqrt(l)
stat_skewness<-1/ sqrt(l)
stat_kurtosis<-3+ (1/l)
stat_coef_var<-1/ sqrt(l)
# Data Tibbleret<-dplyr::tibble(
tidy_function=atb$tibble_type,
function_call=atb$dist_with_params,
distribution= dist_type_extractor(atb$tibble_type),
distribution_type=atb$distribution_family_type,
points=atb$.n,
simulations=atb$.num_sims,
mean=stat_mean,
mode=stat_mode,
range= paste0("1 to Inf"),
std_dv=stat_sd,
coeff_var=stat_coef_var,
skewness=stat_skewness,
kurtosis=stat_kurtosis,
computed_std_skew= tidy_skewness_vec(data_tbl$y),
computed_std_kurt= tidy_kurtosis_vec(data_tbl$y),
ci_lo= ci_lo(data_tbl$y),
ci_hi= ci_hi(data_tbl$y)
)
# Returnreturn(ret)
}
Param Estimate
Function:
Example:
AIC
Function:
Example:
Stats Tibble
Function:
Example:
The text was updated successfully, but these errors were encountered: