forked from salesforce/BLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
root
committed
Feb 3, 2022
1 parent
0f43002
commit f4538ec
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
from models.med import BertConfig, BertModel | ||
from transformers import BertTokenizer | ||
|
||
import torch | ||
from torch import nn | ||
import torch.nn.functional as F | ||
|
||
from models.blip import create_vit, init_tokenizer, load_checkpoint | ||
|
||
class BLIP_ITM(nn.Module): | ||
def __init__(self, | ||
med_config = 'configs/med_config.json', | ||
image_size = 384, | ||
vit = 'base', | ||
vit_grad_ckpt = False, | ||
vit_ckpt_layer = 0, | ||
embed_dim = 256, | ||
): | ||
""" | ||
Args: | ||
med_config (str): path for the mixture of encoder-decoder model's configuration file | ||
image_size (int): input image size | ||
vit (str): model size of vision transformer | ||
""" | ||
super().__init__() | ||
|
||
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | ||
self.tokenizer = init_tokenizer() | ||
med_config = BertConfig.from_json_file(med_config) | ||
med_config.encoder_width = vision_width | ||
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) | ||
|
||
text_width = self.text_encoder.config.hidden_size | ||
|
||
self.vision_proj = nn.Linear(vision_width, embed_dim) | ||
self.text_proj = nn.Linear(text_width, embed_dim) | ||
|
||
self.itm_head = nn.Linear(text_width, 2) | ||
|
||
|
||
def forward(self, image, caption, match_head='itm'): | ||
|
||
image_embeds = self.visual_encoder(image) | ||
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | ||
|
||
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, | ||
return_tensors="pt").to(image.device) | ||
|
||
|
||
if match_head=='itm': | ||
output = self.text_encoder(text.input_ids, | ||
attention_mask = text.attention_mask, | ||
encoder_hidden_states = image_embeds, | ||
encoder_attention_mask = image_atts, | ||
return_dict = True, | ||
) | ||
itm_output = self.itm_head(output.last_hidden_state[:,0,:]) | ||
return itm_output | ||
|
||
elif match_head=='itc': | ||
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, | ||
return_dict = True, mode = 'text') | ||
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) | ||
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) | ||
|
||
sim = image_feat @ text_feat.t() | ||
return sim | ||
|
||
|
||
def blip_itm(pretrained='',**kwargs): | ||
model = BLIP_ITM(**kwargs) | ||
if pretrained: | ||
model,msg = load_checkpoint(model,pretrained) | ||
assert(len(msg.missing_keys)==0) | ||
return model | ||
|