The goal of this package is to provide an improved version of WA-PLS by including the tolerances of taxa and the frequency of the sampled climate variable. This package also provides a way of leave-out cross-validation that removes both the test site and sites that are both geographically close and climatically close for each cycle, to avoid the risk of pseudo-replication.
You can install the released version of fxTWAPLS from CRAN with:
install.packages("fxTWAPLS")
And the development version from GitHub with:
install.packages("remotes")
remotes::install_github("special-uor/fxTWAPLS", "dev")
-
Latest: Liu, M., Shen, Y., González-Sampériz, P., Gil-Romera, G., ter Braak, C. J. F., Prentice, I. C., and Harrison, S. P.: Holocene climates of the Iberian Peninsula: pollen-based reconstructions of changes in the west-east gradient of temperature and moisture, Clim. Past Discuss. [preprint], https://doi.org/10.5194/cp-2021-174, in review, 2021.-
fxTWAPLS v0.1.0
install.packages("remotes") remotes::install_github("special-uor/fxTWAPLS@v0.1.0")
-
Liu Mengmeng, Prentice Iain Colin, ter Braak Cajo J. F., Harrison Sandy P.. 2020 An improved statistical approach for reconstructing past climates from biotic assemblages. Proc. R. Soc. A. 476: 20200346. https://doi.org/10.1098/rspa.2020.0346 -
fxTWAPLS v0.0.2
install.packages("remotes") remotes::install_github("special-uor/fxTWAPLS@v0.0.2")
The following functions can be executed in parallel:
To do so, include the cpus
parameter. For example:
cv_pr_tf_Tmin2 <- fxTWAPLS::cv.pr.w(
taxa,
modern_pollen$Tmin,
nPLS = 5,
fxTWAPLS::TWAPLS.w2,
fxTWAPLS::TWAPLS.predict.w,
pseudo_Tmin,
usefx = TRUE,
fx_method = "pspline",
bin = 0.02,
cpus = 2
)
Optionally, a progress bar can be displayed for long computations. Just
“pipe” the function call to fxTWAPLS::pb()
.
`%>%` <- magrittr::`%>%`
cv_pr_tf_Tmin2 <- fxTWAPLS::cv.pr.w(
taxa,
modern_pollen$Tmin,
nPLS = 5,
fxTWAPLS::TWAPLS.w2,
fxTWAPLS::TWAPLS.predict.w,
pseudo_Tmin,
usefx = TRUE,
fx_method = "pspline",
bin = 0.02,
cpus = 2
) %>%
fxTWAPLS::pb()
Alternatively, if you are not familiar with the “pipe” operator, you can run the following code:
cv_pr_tf_Tmin2 <- fxTWAPLS::pb(
fxTWAPLS::cv.pr.w(
taxa,
modern_pollen$Tmin,
nPLS = 5,
fxTWAPLS::TWAPLS.w2,
fxTWAPLS::TWAPLS.predict.w,
pseudo_Tmin,
usefx = TRUE,
fx_method = "pspline",
bin = 0.02,
cpus = 2
)
)
# Load modern data
modern_pollen <- read.csv("/path/to/modern_pollen.csv")
# Extract modern pollen taxa
taxaColMin <- which(colnames(modern_pollen) == "taxa0")
taxaColMax <- which(colnames(modern_pollen) == "taxaN")
taxa <- modern_pollen[, taxaColMin:taxaColMax]
# Set the binwidth to get the sampling frequency of the climate (fx),
# the fit is almost insenitive to binwidth when choosing pspline method.
bin <- 0.02
# Use fxTWAPLSv2 to train
fit_tf_Tmin2 <- fxTWAPLS::TWAPLS.w2(
taxa,
modern_pollen$Tmin,
nPLS = 5,
usefx = TRUE,
fx_method = "pspline",
bin = bin
)
# Set CPUS to run in parallel
CPUS <- 6
# Import pipe operator to use with the progress bar
`%>%` <- magrittr::`%>%`
# Get the location information of each sample
point <- modern_pollen[, c("Long", "Lat")]
# Get the distance between each point
dist <- fxTWAPLS::get_distance(point, cpus = CPUS)
# Get the pseudo sites (which are both geographically close and climatically
# close to the test site) which should be removed in cross validation
pseudo_Tmin <- fxTWAPLS::get_pseudo(
dist,
modern_pollen$Tmin,
cpus = CPUS
)
# Leave-out cross validation
cv_pr_tf_Tmin2 <- fxTWAPLS::cv.pr.w(
taxa,
modern_pollen$Tmin,
nPLS = 5,
fxTWAPLS::TWAPLS.w2,
fxTWAPLS::TWAPLS.predict.w,
pseudo_Tmin,
usefx = TRUE,
fx_method = "pspline",
bin = bin,
cpus = CPUS,
test_mode = FALSE
) %>%
fxTWAPLS::pb()
# Random t test to the cross validation result
rand_pr_tf_Tmin2 <-
fxTWAPLS::rand.t.test.w(cv_pr_tf_Tmin2, n.perm = 999)
# Load fossil data
Holocene <- read.csv("/path/to/Holocene.csv")
# Extract fossil pollen taxa
taxaColMin <- which(colnames(Holocene) == "taxa0")
taxaColMax <- which(colnames(Holocene) == "taxaN")
core <- Holocene[, taxaColMin:taxaColMax]
# Choose nsig (the last significant number of components) based on the p-value
nsig <- 3
# Predict
fossil_tf_Tmin2 <- fxTWAPLS::TWAPLS.predict.w(fit_tf_Tmin2, core)
# Get the sample specific errors
sse_tf_Tmin2 <- fxTWAPLS::sse.sample(
modern_taxa = taxa,
modern_climate = modern_pollen$Tmin,
fossil_taxa = core,
trainfun = fxTWAPLS::TWAPLS.w2,
predictfun = fxTWAPLS::TWAPLS.predict.w,
nboot = nboot,
nPLS = 5,
nsig = nsig,
usefx = TRUE,
fx_method = "pspline",
bin = bin,
cpus = CPUS
) %>%
fxTWAPLS::pb()
# Output
recon_result <-
cbind.data.frame(
recon_Tmin = fossil_tf_Tmin2[["fit"]][, nsig],
sse_recon_Tmin = sse_tf_Tmin2
)