Skip to content

Commit

Permalink
UE3 Laplace transform
Browse files Browse the repository at this point in the history
  • Loading branch information
fs446 committed May 3, 2020
1 parent 6687acf commit 0dc56bd
Show file tree
Hide file tree
Showing 19 changed files with 4,358 additions and 2,080 deletions.
16 changes: 16 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,22 @@ This Jupyter notebook based tutorial using Python is accompanying the lecture

Lecture and tutorial are designed for International Standard Classification of Education (ISCED) level 6.


## German Distance Learning Version

We are currently designing a very detailed 12 units tutorial to support
distance learning for our students, thus the initial version is in German.
Translations to English are scheduled ASAP.

Please see the LaTex main file `tutorial_latex_deu/sig_sys_ex.tex`.
There are several graphics included, which are created by the provided
Jupyter notebooks.

We might wish to compile all notebooks at once, then we can use:

`python3 -m nbconvert --execute --inplace *.ipynb **/*.ipynb`


## License

- Creative Commons Attribution 4.0 International License (CC BY 4.0) for text/graphics
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
\begin{figure}
\begin{center}
%sigma < 0
\begin{tikzpicture}
%
\def \axisLength {4}
\def \tic {0.05}
\def \sigmaz {1/4}
\def \omegaz {5/4}
\def \convAbsz {-\sigmaz}
\fill[C2!50] (\convAbsz,-\axisLength/2)--(\convAbsz,\axisLength/2)
decorate [decoration={snake,segment length=15pt,amplitude=1pt}]
{(\convAbsz,\axisLength/2)--
(\axisLength/2,\axisLength/2)--
(\axisLength/2,-\axisLength/2)--
(\convAbsz,-\axisLength/2)};
\draw[->] (-\axisLength/2,0)--(\axisLength/2,0) node[right]{\small$\Re\{s\}$};
\draw[->] (0,-\axisLength/2)--(0,\axisLength/2) node[above]{\small$\Im\{s\}$};
\draw[C0, ultra thick] (-\sigmaz,+\omegaz) node{\Huge $\times$};
\draw[C0, ultra thick] (-\sigmaz,-\omegaz) node{\Huge $\times$};
\draw[C0, ultra thick] (-\sigmaz,0) node{\Huge $\circ$};
\draw (-\sigmaz,\tic)--(-\sigmaz,-\tic) node[below]{$\sigma_0$};
\draw (-\tic,\omegaz) -- (\tic,\omegaz) node[right]{$+\omega_0$};
\draw (-\tic,-\omegaz) -- (\tic,-\omegaz) node[right]{$-\omega_0$};
\draw (1.25,+2.25) node[C2!75]{KB};
\draw (1.25,-1.75) node[draw,outer sep=0pt]{$\sigma_0<0, \omega_0>0$};
\draw (1.25,1.75) node[]{$g=+1$};
%
\begin{scope}[shift={(5,-1.5)}]
\begin{axis}[
width=0.45\textwidth,
height=0.3\textwidth,
domain=0:4,
samples=64,
legend pos=outer north east,
xlabel = {t},
ylabel = {$\e^{+\sigma_0 t} \, \cos(\omega_0 t) \, \epsilon(t)$},
title = {$\e^{+\sigma_0 t} \cos(\omega_0 t) \epsilon(t)
\, \laplace \,
\frac{s-\sigma_0}{(s-\sigma_0)^2+\omega_0^2}
\text{ für }\Re\{s\} > +\sigma_0$},
xmin=-0.1, xmax=4,
ymin=-1.1, ymax=1.1,
xtick={0},
ytick={-1,0,1},
ymajorgrids=true,
xmajorgrids=true
]
\addplot[mark=None, color=C0, ultra thick]
coordinates {(-4,0)(0,0)(0,1)};
\addplot[mark=None, color=C0, ultra thick]
{exp(-\sigmaz*4*x) * cos(deg(\omegaz*4*x)))};
\end{axis}
\end{scope}
%
\end{tikzpicture}
%
%
%

% sigma = 0
\begin{tikzpicture}
%
\def \axisLength {4}
\def \tic {0.05}
\def \sigmaz {0}
\def \omegaz {5/4}
\def \convAbsz {-\sigmaz}
\fill[C2!50] (\convAbsz,-\axisLength/2)--(\convAbsz,\axisLength/2)
decorate [decoration={snake,segment length=15pt,amplitude=1pt}]
{(\convAbsz,\axisLength/2)--
(\axisLength/2,\axisLength/2)--
(\axisLength/2,-\axisLength/2)--
(\convAbsz,-\axisLength/2)};
\draw[->] (-\axisLength/2,0)--(\axisLength/2,0) node[right]{\small$\Re\{s\}$};
\draw[->] (0,-\axisLength/2)--(0,\axisLength/2) node[above]{\small$\Im\{s\}$};
\draw[C0, ultra thick] (-\sigmaz,+\omegaz) node{\Huge $\times$};
\draw[C0, ultra thick] (-\sigmaz,-\omegaz) node{\Huge $\times$};
\draw[C0, ultra thick] (-\sigmaz,0) node{\Huge $\circ$};
\draw (-\sigmaz,\tic)--(-\sigmaz,-\tic) node[below]{$\sigma_0$};
\draw (-\tic,\omegaz) -- (\tic,\omegaz) node[right]{$+\omega_0$};
\draw (-\tic,-\omegaz) -- (\tic,-\omegaz) node[right]{$-\omega_0$};
\draw (1.25,+2.25) node[C2!75]{KB};
\draw (1.25,-1.75) node[draw,outer sep=0pt]{$\sigma_0=0, \omega_0>0$};
\draw (1.25,1.75) node[]{$g=+1$};
%
\begin{scope}[shift={(5,-1.5)}]
\begin{axis}[
width=0.45\textwidth,
height=0.3\textwidth,
domain=0:4,
samples=64,
legend pos=outer north east,
xlabel = {t},
ylabel = {$\e^{+\sigma_0 t} \, \cos(\omega_0 t) \, \epsilon(t)$},
title = {$\e^{+\sigma_0 t} \cos(\omega_0 t) \epsilon(t)
\, \laplace \,
\frac{s-\sigma_0}{(s-\sigma_0)^2+\omega_0^2}
\text{ für }\Re\{s\} > +\sigma_0$},
xmin=-0.1, xmax=4,
ymin=-1.1, ymax=1.1,
xtick={0},
ytick={-1,0,1},
ymajorgrids=true,
xmajorgrids=true
]
\addplot[mark=None, color=C0, ultra thick]
coordinates {(-4,0)(0,0)(0,1)};
\addplot[mark=None, color=C0, ultra thick]
{exp(-\sigmaz*4*x) * cos(deg(\omegaz*4*x)))};
\end{axis}
\end{scope}
%
\end{tikzpicture}
%
%
%

%sigma >0
\begin{tikzpicture}
%
\def \axisLength {4}
\def \tic {0.05}
\def \sigmaz {-1/4}
\def \omegaz {5/4}
\def \convAbsz {-\sigmaz}
\fill[C2!50] (\convAbsz,-\axisLength/2)--(\convAbsz,\axisLength/2)
decorate [decoration={snake,segment length=15pt,amplitude=1pt}]
{(\convAbsz,\axisLength/2)--
(\axisLength/2,\axisLength/2)--
(\axisLength/2,-\axisLength/2)--
(\convAbsz,-\axisLength/2)};
\draw[->] (-\axisLength/2,0)--(\axisLength/2,0) node[right]{\small$\Re\{s\}$};
\draw[->] (0,-\axisLength/2)--(0,\axisLength/2) node[above]{\small$\Im\{s\}$};
\draw[C0, ultra thick] (-\sigmaz,+\omegaz) node{\Huge $\times$};
\draw[C0, ultra thick] (-\sigmaz,-\omegaz) node{\Huge $\times$};
\draw[C0, ultra thick] (-\sigmaz,0) node{\Huge $\circ$};
\draw (-\sigmaz,\tic)--(-\sigmaz,-\tic) node[below]{$\sigma_0$};
\draw (-\tic,\omegaz) -- (\tic,\omegaz) node[right]{$+\omega_0$};
\draw (-\tic,-\omegaz) -- (\tic,-\omegaz) node[right]{$-\omega_0$};
\draw (1.25,+2.25) node[C2!75]{KB};
\draw (1.25,-1.75) node[draw,outer sep=0pt]{$\sigma_0>0, \omega_0>0$};
\draw (1.25,1.75) node[]{$g=+1$};
%
\begin{scope}[shift={(5,-1.5)}]
\begin{axis}[
width=0.45\textwidth,
height=0.3\textwidth,
domain=0:4,
samples=64,
legend pos=outer north east,
xlabel = {t},
ylabel = {$\e^{+\sigma_0 t} \, \cos(\omega_0 t) \, \epsilon(t)$},
title = {$\e^{+\sigma_0 t} \cos(\omega_0 t) \epsilon(t)
\, \laplace \,
\frac{s-\sigma_0}{(s-\sigma_0)^2+\omega_0^2}
\text{ für }\Re\{s\} > +\sigma_0$},
xmin=-0.1, xmax=4,
ymin=-10.1, ymax=10.1,
xtick={0},
ytick={-1,0,1},
ymajorgrids=true,
xmajorgrids=true
]
\addplot[mark=None, color=C0, ultra thick]
coordinates {(-4,0)(0,0)(0,1)};
\addplot[mark=None, color=C0, ultra thick]
{exp(-\sigmaz*4*x) * cos(deg(\omegaz*4*x)))};
\end{axis}
\end{scope}
%
\end{tikzpicture}
\end{center}
%
%
%
\caption{\textbf{Kausales} 2-Pol/1-NST Signal für
$\sigma_0\in\mathbb{R}$ und $\omega_0\in\mathbb{R}, >0$.
Links: $s$-Ebene, rechts: zugehöriges \textbf{rechtsseitiges}
Signal $\e^{+\sigma_0 t} \, \cos(\omega_0 t) \, \epsilon(t)$
mit Variation von $\sigma_0$.
Das Signal ganz oben geht wegen exp() und $\sigma_0<0$ asymptotisch gegen Null.
Das Signal in der Mitte ist eine harmonische cos()-Schwingung für $t>0$, weil
$\sigma_0=0$.
Das Signal ganz unten ist nicht beschränkt, weil exp() wegen $\sigma_0>0$ wächst.
}
\label{fig:31AEFEF90B}
\end{figure}
Loading

0 comments on commit 0dc56bd

Please sign in to comment.