Skip to content

Implement hierarchical clustering #11

Open
@Mec-iS

Description

@Mec-iS

Motivation: why do we need hierarchical when we have already kmeans?

Vocabulary:

  • divisive clustering: ...
  • agglomerative clustering: average, weighted, median, centroid, Ward

Sub-tasks:

  • pick one or a minimal set of metrics-distances
  • pick one or a minimal set of linkage strategies
  • pick one or more algorithms (SLINK for single-linkage and CLINK for complete-linkage clustering)

Visualisations: (?)

Other implementations:

Metadata

Metadata

Assignees

Labels

enhancementNew feature or requesthelp wantedExtra attention is needed

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions