forked from alexjc/neural-doodle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Loading up the VGG model, creating some theano tensors.
- Loading branch information
Showing
1 changed file
with
56 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
import pickle | ||
import collections | ||
|
||
import theano.tensor as T | ||
|
||
import lasagne | ||
from lasagne.layers import Conv2DLayer as ConvLayer, Pool2DLayer as PoolLayer | ||
from lasagne.layers import InputLayer | ||
|
||
|
||
class Model(object): | ||
|
||
def __init__(self, layers): | ||
self.layers = layers | ||
|
||
self.build_model() | ||
self.load_params() | ||
|
||
def build_model(self): | ||
net = collections.OrderedDict() | ||
net['input'] = InputLayer((1, 3, None, None)) | ||
net['conv1_1'] = ConvLayer(net['input'], 64, 3, pad=1) | ||
net['conv1_2'] = ConvLayer(net['conv1_1'], 64, 3, pad=1) | ||
net['pool1'] = PoolLayer(net['conv1_2'], 2, mode='average_exc_pad') | ||
net['conv2_1'] = ConvLayer(net['pool1'], 128, 3, pad=1) | ||
net['conv2_2'] = ConvLayer(net['conv2_1'], 128, 3, pad=1) | ||
net['pool2'] = PoolLayer(net['conv2_2'], 2, mode='average_exc_pad') | ||
net['conv3_1'] = ConvLayer(net['pool2'], 256, 3, pad=1) | ||
net['conv3_2'] = ConvLayer(net['conv3_1'], 256, 3, pad=1) | ||
net['conv3_3'] = ConvLayer(net['conv3_2'], 256, 3, pad=1) | ||
net['conv3_4'] = ConvLayer(net['conv3_3'], 256, 3, pad=1) | ||
net['pool3'] = PoolLayer(net['conv3_4'], 2, mode='average_exc_pad') | ||
net['conv4_1'] = ConvLayer(net['pool3'], 512, 3, pad=1) | ||
net['conv4_2'] = ConvLayer(net['conv4_1'], 512, 3, pad=1) | ||
# net['conv4_3'] = ConvLayer(net['conv4_2'], 512, 3, pad=1) | ||
# net['conv4_4'] = ConvLayer(net['conv4_3'], 512, 3, pad=1) | ||
# net['pool4'] = PoolLayer(net['conv4_4'], 2, mode='average_exc_pad') | ||
# net['conv5_1'] = ConvLayer(net['pool4'], 512, 3, pad=1) | ||
# net['conv5_2'] = ConvLayer(net['conv5_1'], 512, 3, pad=1) | ||
# net['conv5_3'] = ConvLayer(net['conv5_2'], 512, 3, pad=1) | ||
# net['conv5_4'] = ConvLayer(net['conv5_3'], 512, 3, pad=1) | ||
# net['pool5'] = PoolLayer(net['conv5_4'], 2, mode='average_exc_pad') | ||
self.network = net | ||
|
||
def load_params(self): | ||
vgg19_values = pickle.load(open('vgg19_conv.pkl', 'rb')) | ||
output_layer = list(self.network.values())[-1] | ||
params = lasagne.layers.get_all_param_values(output_layer) | ||
lasagne.layers.set_all_param_values(output_layer, vgg19_values[:len(params)]) | ||
|
||
self.tensor_input = T.tensor4() | ||
self.tensor_outputs = lasagne.layers.get_output([self.network[l] for l in self.layers], self.tensor_input) | ||
|
||
|
||
if __name__ == "__main__": | ||
model = Model(layers=['conv3_1', 'conv4_1']) |