forked from mesolitica/NLP-Models-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
77874ab
commit 8596bf1
Showing
2 changed files
with
270 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import tensorflow as tf\n", | ||
"import numpy as np\n", | ||
"import pickle" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"with open('dataset-bert.pkl', 'rb') as fopen:\n", | ||
" dataset = pickle.load(fopen)\n", | ||
"dataset.keys()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"BERT_VOCAB = 'uncased_L-12_H-768_A-12/vocab.txt'\n", | ||
"BERT_INIT_CHKPNT = 'uncased_L-12_H-768_A-12/bert_model.ckpt'\n", | ||
"BERT_CONFIG = 'uncased_L-12_H-768_A-12/bert_config.json'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import bert\n", | ||
"from bert import run_classifier\n", | ||
"from bert import optimization\n", | ||
"from bert import tokenization\n", | ||
"from bert import modeling" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tokenization.validate_case_matches_checkpoint(True,BERT_INIT_CHKPNT)\n", | ||
"tokenizer = tokenization.FullTokenizer(\n", | ||
" vocab_file=BERT_VOCAB, do_lower_case=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"bert_config = modeling.BertConfig.from_json_file(BERT_CONFIG)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"epoch = 20\n", | ||
"batch_size = 32\n", | ||
"warmup_proportion = 0.1\n", | ||
"num_train_steps = int(len(dataset['train_texts']) / batch_size * epoch)\n", | ||
"num_warmup_steps = int(num_train_steps * warmup_proportion)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"class Model:\n", | ||
" def __init__(\n", | ||
" self,\n", | ||
" learning_rate = 2e-5,\n", | ||
" ):\n", | ||
" self.X = tf.placeholder(tf.int32, [None, None])\n", | ||
" self.segment_ids = tf.placeholder(tf.int32, [None, None])\n", | ||
" self.input_masks = tf.placeholder(tf.int32, [None, None])\n", | ||
" self.Y = tf.placeholder(tf.float32, [None, None])\n", | ||
" self.mask = tf.placeholder(tf.int32, [None, None])\n", | ||
" self.clss = tf.placeholder(tf.int32, [None, None])\n", | ||
" mask = tf.cast(self.mask, tf.float32)\n", | ||
" \n", | ||
" model = modeling.BertModel(\n", | ||
" config=bert_config,\n", | ||
" is_training=True,\n", | ||
" input_ids=self.X,\n", | ||
" input_mask=self.input_masks,\n", | ||
" token_type_ids=self.segment_ids,\n", | ||
" use_one_hot_embeddings=False)\n", | ||
" \n", | ||
" outputs = model.get_sequence_output()\n", | ||
" self.logits = tf.layers.dense(outputs, 1)\n", | ||
" self.logits = tf.squeeze(self.logits, axis=-1)\n", | ||
" self.logits = self.logits * mask\n", | ||
" crossent = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.Y)\n", | ||
" crossent = crossent * mask\n", | ||
" crossent = tf.reduce_sum(crossent)\n", | ||
" total_size = tf.reduce_sum(mask)\n", | ||
" self.cost = tf.div_no_nan(crossent, total_size)\n", | ||
" \n", | ||
" self.optimizer = optimization.create_optimizer(self.cost, learning_rate, \n", | ||
" num_train_steps, num_warmup_steps, False)\n", | ||
" \n", | ||
" l = tf.round(tf.sigmoid(self.logits))\n", | ||
" self.accuracy = tf.reduce_mean(tf.cast(tf.boolean_mask(l, tf.equal(self.Y, 1)), tf.float32))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tf.reset_default_graph()\n", | ||
"sess = tf.InteractiveSession()\n", | ||
"model = Model(learning_rate = 2e-5)\n", | ||
"sess.run(tf.global_variables_initializer())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"sess.run(tf.global_variables_initializer())\n", | ||
"var_lists = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope = 'bert')\n", | ||
"saver = tf.train.Saver(var_list = var_lists)\n", | ||
"saver.restore(sess, BERT_INIT_CHKPNT)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def pad_sentence_batch(sentence_batch, pad_int):\n", | ||
" padded_seqs = []\n", | ||
" seq_lens = []\n", | ||
" max_sentence_len = max([len(sentence) for sentence in sentence_batch])\n", | ||
" for sentence in sentence_batch:\n", | ||
" padded_seqs.append(sentence + [pad_int] * (max_sentence_len - len(sentence)))\n", | ||
" seq_lens.append(len(sentence))\n", | ||
" return padded_seqs, seq_lens" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_X = dataset['train_texts']\n", | ||
"test_X = dataset['test_texts']\n", | ||
"train_clss = dataset['train_clss']\n", | ||
"test_clss = dataset['test_clss']\n", | ||
"train_Y = dataset['train_labels']\n", | ||
"test_Y = dataset['test_labels']\n", | ||
"train_segments = dataset['train_segments']\n", | ||
"test_segments = dataset['test_segments']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import tqdm\n", | ||
"\n", | ||
"for e in range(epoch):\n", | ||
" pbar = tqdm.tqdm(\n", | ||
" range(0, len(train_X), batch_size), desc = 'minibatch loop')\n", | ||
" train_loss, train_acc, test_loss, test_acc = [], [], [], []\n", | ||
" for i in pbar:\n", | ||
" index = min(i + batch_size, len(train_X))\n", | ||
" batch_x, _ = pad_sentence_batch(train_X[i : index], 0)\n", | ||
" batch_y, _ = pad_sentence_batch(train_Y[i : index], 0)\n", | ||
" batch_segments, _ = pad_sentence_batch(train_segments[i : index], 0)\n", | ||
" batch_clss, _ = pad_sentence_batch(train_clss[i : index], -1)\n", | ||
" batch_clss = np.array(batch_clss)\n", | ||
" batch_x = np.array(batch_x)\n", | ||
" batch_mask = 1 - (batch_clss == -1)\n", | ||
" batch_clss[batch_clss == -1] = 0\n", | ||
" mask_src = 1 - (batch_x == 0)\n", | ||
" feed = {model.X: batch_x,\n", | ||
" model.Y: batch_y,\n", | ||
" model.mask: batch_mask,\n", | ||
" model.clss: batch_clss,\n", | ||
" model.segment_ids: batch_segments,\n", | ||
" model.input_masks: mask_src}\n", | ||
" accuracy, loss, _ = sess.run([model.accuracy,model.cost,model.optimizer],\n", | ||
" feed_dict = feed)\n", | ||
" train_loss.append(loss)\n", | ||
" train_acc.append(accuracy)\n", | ||
" pbar.set_postfix(cost = loss, accuracy = accuracy)\n", | ||
" \n", | ||
" pbar = tqdm.tqdm(\n", | ||
" range(0, len(test_X), batch_size), desc = 'minibatch loop')\n", | ||
" for i in pbar:\n", | ||
" index = min(i + batch_size, len(test_X))\n", | ||
" batch_x, _ = pad_sentence_batch(test_X[i : index], 0)\n", | ||
" batch_y, _ = pad_sentence_batch(test_Y[i : index], 0)\n", | ||
" batch_segments, _ = pad_sentence_batch(test_segments[i : index], 0)\n", | ||
" batch_clss, _ = pad_sentence_batch(test_clss[i : index], -1)\n", | ||
" batch_clss = np.array(batch_clss)\n", | ||
" batch_x = np.array(batch_x)\n", | ||
" batch_mask = 1 - (batch_clss == -1)\n", | ||
" batch_clss[batch_clss == -1] = 0\n", | ||
" mask_src = 1 - (batch_x == 0)\n", | ||
" feed = {model.X: batch_x,\n", | ||
" model.Y: batch_y,\n", | ||
" model.mask: batch_mask,\n", | ||
" model.clss: batch_clss,\n", | ||
" model.segment_ids: batch_segments,\n", | ||
" model.input_masks: mask_src}\n", | ||
" accuracy, loss = sess.run([model.accuracy,model.cost],\n", | ||
" feed_dict = feed)\n", | ||
"\n", | ||
" pbar.set_postfix(cost = loss, accuracy = accuracy)\n", | ||
" \n", | ||
" print('epoch %d, training avg loss %f, training avg acc %f'%(e+1,\n", | ||
" np.mean(train_loss),np.mean(train_acc)))\n", | ||
" print('epoch %d, testing avg loss %f, testing avg acc %f'%(e+1,\n", | ||
" np.mean(test_loss),np.mean(test_acc)))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |