Simple and Powerful image engine search, that know NLP and use Vector search for find similar results.
- vector search
- keyword search
- dockerized
- user-friendly interface
In backend use Fastapi framework, meilisearch, qdrant, pytest
first set DataBase and virtualenv
Set Qdrant database:
docker pull qdrant/qdrant docker run -p 6333:6333 qdrant/qdrant
Set Meilisearch:
docker run -d --rm
--name meili-search
-p 7700:7700
-e MEILI_ENV='development'
-v $(pwd)/meili_data:/meili_data
getmeili/meilisearch
Now Set virtualenv:
python -m venv venv_name
active it in Linux:
source venv_name/bin/activate
Clone the project
git clone https://github.com/sina-mobarez/mini-Mori.git
Go to the project directory
cd mini-Mori
Install dependencies
cd backend
pip install requirements.txt
Fill Qdrant Database (exist a json file that contain 10000 products information by this command process images of products and store in vectordb):
python scripts/process_images.py products.json batch-size
Fill Meilisearch Database [exist a json file that contain 10000 products information by this command indexing all products in database]:
python scripts/load_products_to_meilisearch.py products.json
Start the server
fastapi run
- Now you can use swagger or postman to call apis
User interface use Vue.js for run it:
cd ../frontend
Install dependencies
npm install
Start the server
npm run dev
- [just for production] Compile and Minify for Production
npm run build
To run tests, run the following command
pytest /tests
make sure you are in /backend.
Contributions are always welcome!
If you have any feedback, please reach out to us at mubarriizz@gmail.com