Skip to content

simonsLiang/PReNet_paddle

Repository files navigation

PReNet_paddle

目录

1. 简介

Progressive Image Deraining Networks: A Better and Simpler Baseline提出一种多阶段渐进的残差网络,每一个阶段都是resnet,每一res块的输入为上一res块输出和原始雨图,另外采用使用SSIM损失进行训练,进一步提升了网络的性能,网络总体简洁高效,在各种数据集上表现良好,为图像去雨提供了一个很好的基准。

论文: Progressive Image Deraining Networks: A Better and Simpler Baseline

参考repo: https://github.com/csdwren/PReNet

在此感谢MSSIM,提高了论文复现的效率。

快速使用可参考AIStudio

2. 数据集和复现精度

数据集:RainTrainH,Rain100H,其中RainTrainH包含1254张雨图以及对应原图用于训练,Rain100H包含100张雨图和对应原图用于测试

原论文精度:Rain100H数据集,PReNet模型,psnr=29.46,ssim=0.899 (epoch=100,使用matlab计算)

复现精度:Rain100H数据集,PReNet模型,psnr=29.5037, ssim=0.899 (epoch=80,使用matlab计算)

论文官方代码使用matlab计算psnr和ssim,使用python的scikit-image计算原论文提供的模型得到的精度为psnr=29.4522,ssim=0.898,

本项目结果使用scikit-image计算得到的精度为psnr=29.4906,ssim=0.898

PS:原论文batch_size为18,学习率为0.001,本项目将batch_size调整为24,学习率成比例调整为0.0013,其他超参数与原论文一致

更多细节:(指标使用scikit-image计算)

Epoch 30 70 80 90 100
psnr 29.0431 29.2912 29.4906 29.3387 29.3822
ssim 0.892 0.897 0.898 0.897 0.898

可以从BaiduYun处下载训练日志(train.log)、模型对齐过程以及完成训练的模型参数

3. 准备环境与数据

3.1 准备环境

  • 下载代码
git clone https://github.com/simonsLiang/PReNet_paddle.git
cd PReNet_paddle
  • 安装paddlepaddle
# 需要安装2.2及以上版本的Paddle,如果
# 安装GPU版本的Paddle
pip install paddlepaddle-gpu==2.2.0
# 安装CPU版本的Paddle
pip install paddlepaddle==2.2.0

更多安装方法可以参考:Paddle安装指南

  • 安装requirements
pip install -r requirements.txt

3.2 准备数据

您可以从BaiduYun下载RainTrainH.zip,Rain100H.zip

unzip RainTrainH.zip
unzip Rain100H.zip                                                        

3.3 准备模型

如果您希望直接体验评估或者预测推理过程,可以直接根据第2章的内容下载提供的预训练模型,直接体验模型评估、预测、推理部署等内容。

4. 开始使用

4.1 模型训练

  • 单机单卡训练 需保证save_path路径已存在
export CUDA_VISIBLE_DEVICES=0
python train.py --data_path ./RainTrainH --save_path ./logs

部分训练日志如下所示。

[Epoch 65, iter: 600] lr: 0.00004, loss: -0.90461, avg_reader_cost: 0.00018 sec, avg_batch_cost: 0.16442 sec, avg_samples: 18.0, avg_ips: 109.47310 images/sec.
[Epoch 65, iter: 700] lr: 0.00004, loss: -0.89737, avg_reader_cost: 0.00018 sec, avg_batch_cost: 0.16499 sec, avg_samples: 18.0, avg_ips: 109.09891 images/sec.
[Epoch 65, iter: 800] lr: 0.00004, loss: -0.90011, avg_reader_cost: 0.00018 sec, avg_batch_cost: 0.16469 sec, avg_samples: 18.0, avg_ips: 109.29738 images/sec.
[Epoch 65, iter: 900] lr: 0.00004, loss: -0.90944, avg_reader_cost: 0.00018 sec, avg_batch_cost: 0.16455 sec, avg_samples: 18.0, avg_ips: 109.38969 images/sec.
[Epoch 65, iter: 1000] lr: 0.00004, loss: -0.89040, avg_reader_cost: 0.00017 sec, avg_batch_cost: 0.16437 sec, avg_samples: 18.0, avg_ips: 109.50791 images/sec.
[Epoch 66, iter: 100] lr: 0.00004, loss: -0.88260, avg_reader_cost: 0.00355 sec, avg_batch_cost: 0.16936 sec, avg_samples: 18.0, avg_ips: 106.28161 images/sec.
[Epoch 66, iter: 200] lr: 0.00004, loss: -0.89613, avg_reader_cost: 0.00018 sec, avg_batch_cost: 0.16438 sec, avg_samples: 18.0, avg_ips: 109.50329 images/sec.
[Epoch 66, iter: 300] lr: 0.00004, loss: -0.91299, avg_reader_cost: 0.00017 sec, avg_batch_cost: 0.16440 sec, avg_samples: 18.0, avg_ips: 109.49193 images/sec.
[Epoch 66, iter: 400] lr: 0.00004, loss: -0.86077, avg_reader_cost: 0.00017 sec, avg_batch_cost: 0.16451 sec, avg_samples: 18.0, avg_ips: 109.41454 images/sec.

4.2 模型评估

python test.py --data_path ./Rain100H --pretrained ./logs/net_latest.pdparams

期望输出如下。

rain-098.png :  0.016921281814575195
rain-099.png :  0.016952991485595703
rain-100.png :  0.01595759391784668
Avg. time: 0.017012195587158205

==> Valid. psnr: 29.4522, ssim: 0.8980

4.3 模型预测

python predict.py --data_path data/rain-001.png --save_path ./results  --logdir ./logs/net_latest.pdparams

对于下面的图像进行预测

得到

5. 模型推理部署

5.1 基于Inference的推理

Inference推理教程可参考:链接

5.2 基于Serving的服务化部署

Serving部署教程可参考:链接

6. TIPC自动化测试脚本

以Linux基础训练推理测试为例,测试流程如下。

  • 再PReNet_paddle目录下 运行测试命令
bash test_tipc/test_train_inference_python.sh test_tipc/configs/PReNet/train_infer_python.txt lite_train_lite_infer

在终端中会显示下面的内容

 Run successfully with command - python3.7 train.py --output-dir=./log/PReNet/lite_train_lite_infer/norm_train_gpus_0 --epochs=1   --batch-size=32! 
 Run successfully with command - python3.7 test.py --data_path ./Rain10H  --pretrained=./log/PReNet/lite_train_lite_infer/norm_train_gpus_0/net_latest.pdparams! 
 Run successfully with command - python3.7 tools/export_model.py  --pretrained=./log/PReNet/lite_train_lite_infer/norm_train_gpus_0/net_latest.pdparams --save-inference-dir=./log/PReNet/lite_train_lite_infer/norm_train_gpus_0!  
(1, 3, 224, 224)
image_name: ./data/rain-001.png,, prob_shape: (3, 224, 224)
 Run successfully with command - python3.7 tools/infer.py --use-gpu=True --model-dir=./log/PReNet/lite_train_lite_infer/norm_train_gpus_0 --batch-size=1   --benchmark=False > ./log/PReNet/lite_train_lite_infer/python_infer_gpu_batchsize_1.log 2>&1 !

7. LICENSE

MIT license

8. 参考链接与文献

  1. Progressive Image Deraining Networks: A Better and Simpler Baseline
  2. MSSIM: https://github.com/AgentMaker/Paddle-MSSSIM

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published