A Model Context Protocol (MCP) server with enhanced Genie AI integration that provides seamless natural language interaction between AI assistants (like Claude Desktop, Cursor) and Databricks workspaces.
Enables AI assistants to directly interact with your Databricks workspace:
- Execute SQL queries and manage warehouses
- Control clusters (create, start, stop, monitor)
- Run jobs and notebooks
- Ask natural language questions with Genie AI
- Manage Unity Catalog (catalogs, schemas, tables)
- Work with DBFS, repos, and libraries
Recommended Setup: No manual installation needed! Use uvx to automatically run the server.
- Install
uv(one-time):curl -LsSf https://astral.sh/uv/install.sh | sh - Configure Cursor MCP settings with:
{ "command": "uvx", "args": ["databricks-mcp-genie"] } - Add your Databricks credentials to the
envsection
Full details in the Cursor Setup Guide.
This project now includes automated Claude Code PR reviews! Every pull request receives:
- Comprehensive code quality analysis
- Security vulnerability scanning
- Performance optimization suggestions
- Best practices validation
PRs are automatically reviewed using GitHub Actions powered by Claude.
- Python 3.10 or higher
- Databricks workspace with personal access token
- Cursor IDE, Claude Desktop, or any MCP-compatible client
For MCP Clients (Recommended):
No manual installation! Use uvx in your MCP client configuration - it automatically downloads and runs the server.
For Development:
# Clone the repository
git clone https://github.com/sidart10/databrics-mcp-server.git
cd databrics-mcp-server
# Install with uv
uv sync-
Get your Databricks credentials:
- Workspace URL:
https://your-workspace.cloud.databricks.com - Personal Access Token: Generate from User Settings > Developer > Access Tokens
- Workspace URL:
-
Configure MCP client:
For Cursor: See the Cursor Setup Guide for detailed instructions.
For Claude Desktop: Edit ~/.config/Claude/claude_desktop_config.json:
{
"mcpServers": {
"databricks": {
"command": "uvx",
"args": ["databricks-mcp-genie"],
"env": {
"DATABRICKS_HOST": "https://your-workspace.cloud.databricks.com",
"DATABRICKS_TOKEN": "your-personal-access-token-here"
}
}
}
}Note:
uvx(included withuv) automatically downloads and runs the MCP server. No manual installation needed!
- Restart Claude Desktop
With uvx (after configuring Cursor/Claude Desktop):
- Restart your MCP client
- Try: "List my Databricks clusters"
- If you see results, it's working!
From source (development):
uv run -m databricks_mcp.mainGenie AI (5 tools) - Natural language data analysis
list_genie_spaces- List available Genie AI spacesstart_genie_conversation- Ask questions in natural languagesend_genie_followup- Continue conversations with contextget_genie_message_status- Check message processing statusget_genie_query_results- Retrieve SQL results from Genie
Clusters API (6 tools)
list_clusters,create_cluster,get_clusterstart_cluster,terminate_cluster
SQL API (1 tool)
execute_sql- Run SQL queries with warehouse
Jobs API (9 tools)
list_jobs,create_job,delete_job,run_joblist_job_runs,get_run_status,cancel_runrun_notebook,sync_repo_and_run_notebook
Notebooks API (5 tools)
list_notebooks,export_notebook,import_notebookdelete_workspace_object,get_workspace_file_content,get_workspace_file_info
DBFS API (3 tools)
list_files,dbfs_put,dbfs_delete
Unity Catalog API (7 tools)
list_catalogs,create_cataloglist_schemas,create_schemalist_tables,create_table,get_table_lineage
Repos API (4 tools)
list_repos,create_repo,update_repo,pull_repo
Libraries API (3 tools)
install_library,uninstall_library,list_cluster_libraries
Once configured, you can ask Claude to interact with Databricks:
"List all my running clusters"
"Execute this SQL query: SELECT * FROM my_catalog.my_schema.my_table LIMIT 10"
"Ask Genie: What were the top products by revenue last month?"
"Create a new job to run my ETL notebook daily"
from databricks_mcp.server import DatabricksMCPServer
# Initialize server
server = DatabricksMCPServer()
# Use via MCP protocol
server.run()from databricks_mcp.api import clusters, genie, sql
# List clusters
clusters_list = await clusters.list_clusters()
# Ask Genie a question
response = await genie.start_conversation(
space_id="01efc298aabd1ae9bac6128988a6eaaa",
question="Show me revenue trends by product category"
)
# Execute SQL
results = await sql.execute_sql(
statement="SELECT * FROM sales.orders LIMIT 100",
warehouse_id="your-warehouse-id"
)databrics-mcp-server/
├── databricks_mcp/ # Main Python package
│ ├── api/ # API modules (clusters, sql, genie, etc.)
│ ├── core/ # Core utilities and config
│ ├── server/ # MCP server implementation
│ └── cli/ # CLI commands
├── tests/ # Test suite
├── examples/ # Usage examples
├── scripts/ # Utility scripts
├── docs/ # Documentation
├── pyproject.toml # Package configuration
├── .mcp.json # MCP client configuration
└── test_server.sh # Quick server test
Check logs: databricks_mcp.log
Common issues:
- Invalid credentials in
.mcp.json - Incorrect Python path in MCP config
- Missing dependencies (run
pip install -e ".[dev]")
# Verify all imports work
.venv/bin/python -c "from databricks_mcp.server import DatabricksMCPServer"
.venv/bin/python -c "from databricks_mcp.api import clusters, sql, genie"Verify credentials:
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_TOKEN="your-token"
.venv/bin/python -c "
from databricks_mcp.api import clusters
import asyncio
print(asyncio.run(clusters.list_clusters()))
"See TROUBLESHOOTING.md for detailed solutions.
# All tests
.venv/bin/pytest tests/ -v
# Specific test file
.venv/bin/pytest tests/test_clusters.py -v
# With coverage
.venv/bin/pytest tests/ --cov=databricks_mcp# Format code
.venv/bin/black databricks_mcp/
# Lint
.venv/bin/pylint databricks_mcp/- Add API function in
databricks_mcp/api/ - Register tool in
databricks_mcp/server/databricks_mcp_server.py:
@self.tool(
name="your_tool_name",
description="What your tool does with parameters: param1 (required), param2 (optional)"
)
async def your_tool(params: Dict[str, Any]) -> List[TextContent]:
try:
actual_params = _unwrap_params(params)
result = await your_api_module.your_function(actual_params)
return [{"type": "text", "text": json.dumps(result)}]
except Exception as e:
logger.error(f"Error: {str(e)}")
return [{"type": "text", "text": json.dumps({"error": str(e)})}]- Cursor Setup Guide - One-click installation for Cursor (recommended for teams)
- QUICK_START.md - Getting started guide
- Deployment Summary - Package distribution overview
- PUBLISHING.md - How to publish to PyPI
- TROUBLESHOOTING.md - Common issues and solutions
- ENHANCEMENTS.md - Feature enhancements and roadmap
- Python >=3.10
- mcp[cli] >=1.2.0
- httpx
- databricks-sdk
- pytest (dev)
- black (dev)
- pylint (dev)
MIT License - See LICENSE file for details
PyPI Package: databricks-mcp-genie Source Repository: https://github.com/sidart10/databrics-mcp-server Maintainer: Sid Original Author: Olivier Debeuf De Rijcker (databricks-mcp)
Special thanks to:
- Olivier Debeuf De Rijcker for the original databricks-mcp implementation
- Anthropic for Claude and the MCP protocol
- Databricks for their comprehensive SDK and Genie AI
- The open source community
Built with Claude Code - AI-assisted development tool by Anthropic