Skip to content

MCP server for Databricks integration. Production-ready connector for data platform automation.

Notifications You must be signed in to change notification settings

sidart10/databrics-mcp-server

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Databricks MCP Genie

A Model Context Protocol (MCP) server with enhanced Genie AI integration that provides seamless natural language interaction between AI assistants (like Claude Desktop, Cursor) and Databricks workspaces.

What This Does

Enables AI assistants to directly interact with your Databricks workspace:

  • Execute SQL queries and manage warehouses
  • Control clusters (create, start, stop, monitor)
  • Run jobs and notebooks
  • Ask natural language questions with Genie AI
  • Manage Unity Catalog (catalogs, schemas, tables)
  • Work with DBFS, repos, and libraries

Quick Start

For Cursor Users

Recommended Setup: No manual installation needed! Use uvx to automatically run the server.

  1. Install uv (one-time): curl -LsSf https://astral.sh/uv/install.sh | sh
  2. Configure Cursor MCP settings with:
    {
      "command": "uvx",
      "args": ["databricks-mcp-genie"]
    }
  3. Add your Databricks credentials to the env section

Full details in the Cursor Setup Guide.

Automated Code Review

This project now includes automated Claude Code PR reviews! Every pull request receives:

  • Comprehensive code quality analysis
  • Security vulnerability scanning
  • Performance optimization suggestions
  • Best practices validation

PRs are automatically reviewed using GitHub Actions powered by Claude.

Prerequisites

  • Python 3.10 or higher
  • Databricks workspace with personal access token
  • Cursor IDE, Claude Desktop, or any MCP-compatible client

Installation

For MCP Clients (Recommended): No manual installation! Use uvx in your MCP client configuration - it automatically downloads and runs the server.

For Development:

# Clone the repository
git clone https://github.com/sidart10/databrics-mcp-server.git
cd databrics-mcp-server

# Install with uv
uv sync

Configuration

  1. Get your Databricks credentials:

    • Workspace URL: https://your-workspace.cloud.databricks.com
    • Personal Access Token: Generate from User Settings > Developer > Access Tokens
  2. Configure MCP client:

For Cursor: See the Cursor Setup Guide for detailed instructions.

For Claude Desktop: Edit ~/.config/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "databricks": {
      "command": "uvx",
      "args": ["databricks-mcp-genie"],
      "env": {
        "DATABRICKS_HOST": "https://your-workspace.cloud.databricks.com",
        "DATABRICKS_TOKEN": "your-personal-access-token-here"
      }
    }
  }
}

Note: uvx (included with uv) automatically downloads and runs the MCP server. No manual installation needed!

  1. Restart Claude Desktop

Verify Installation

With uvx (after configuring Cursor/Claude Desktop):

  • Restart your MCP client
  • Try: "List my Databricks clusters"
  • If you see results, it's working!

From source (development):

uv run -m databricks_mcp.main

Available Features

43 MCP Tools Across 9 API Modules

Genie AI (5 tools) - Natural language data analysis

  • list_genie_spaces - List available Genie AI spaces
  • start_genie_conversation - Ask questions in natural language
  • send_genie_followup - Continue conversations with context
  • get_genie_message_status - Check message processing status
  • get_genie_query_results - Retrieve SQL results from Genie

Clusters API (6 tools)

  • list_clusters, create_cluster, get_cluster
  • start_cluster, terminate_cluster

SQL API (1 tool)

  • execute_sql - Run SQL queries with warehouse

Jobs API (9 tools)

  • list_jobs, create_job, delete_job, run_job
  • list_job_runs, get_run_status, cancel_run
  • run_notebook, sync_repo_and_run_notebook

Notebooks API (5 tools)

  • list_notebooks, export_notebook, import_notebook
  • delete_workspace_object, get_workspace_file_content, get_workspace_file_info

DBFS API (3 tools)

  • list_files, dbfs_put, dbfs_delete

Unity Catalog API (7 tools)

  • list_catalogs, create_catalog
  • list_schemas, create_schema
  • list_tables, create_table, get_table_lineage

Repos API (4 tools)

  • list_repos, create_repo, update_repo, pull_repo

Libraries API (3 tools)

  • install_library, uninstall_library, list_cluster_libraries

Usage Examples

Using with Claude Desktop

Once configured, you can ask Claude to interact with Databricks:

"List all my running clusters"
"Execute this SQL query: SELECT * FROM my_catalog.my_schema.my_table LIMIT 10"
"Ask Genie: What were the top products by revenue last month?"
"Create a new job to run my ETL notebook daily"

Programmatic Usage

from databricks_mcp.server import DatabricksMCPServer

# Initialize server
server = DatabricksMCPServer()

# Use via MCP protocol
server.run()

Direct API Usage

from databricks_mcp.api import clusters, genie, sql

# List clusters
clusters_list = await clusters.list_clusters()

# Ask Genie a question
response = await genie.start_conversation(
    space_id="01efc298aabd1ae9bac6128988a6eaaa",
    question="Show me revenue trends by product category"
)

# Execute SQL
results = await sql.execute_sql(
    statement="SELECT * FROM sales.orders LIMIT 100",
    warehouse_id="your-warehouse-id"
)

Project Structure

databrics-mcp-server/
├── databricks_mcp/           # Main Python package
│   ├── api/                  # API modules (clusters, sql, genie, etc.)
│   ├── core/                 # Core utilities and config
│   ├── server/               # MCP server implementation
│   └── cli/                  # CLI commands
├── tests/                    # Test suite
├── examples/                 # Usage examples
├── scripts/                  # Utility scripts
├── docs/                     # Documentation
├── pyproject.toml           # Package configuration
├── .mcp.json                # MCP client configuration
└── test_server.sh           # Quick server test

Troubleshooting

Server Won't Start

Check logs: databricks_mcp.log

Common issues:

  • Invalid credentials in .mcp.json
  • Incorrect Python path in MCP config
  • Missing dependencies (run pip install -e ".[dev]")

Import Errors

# Verify all imports work
.venv/bin/python -c "from databricks_mcp.server import DatabricksMCPServer"
.venv/bin/python -c "from databricks_mcp.api import clusters, sql, genie"

Connection Issues

Verify credentials:

export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_TOKEN="your-token"
.venv/bin/python -c "
from databricks_mcp.api import clusters
import asyncio
print(asyncio.run(clusters.list_clusters()))
"

See TROUBLESHOOTING.md for detailed solutions.

Development

Running Tests

# All tests
.venv/bin/pytest tests/ -v

# Specific test file
.venv/bin/pytest tests/test_clusters.py -v

# With coverage
.venv/bin/pytest tests/ --cov=databricks_mcp

Code Quality

# Format code
.venv/bin/black databricks_mcp/

# Lint
.venv/bin/pylint databricks_mcp/

Adding New Tools

  1. Add API function in databricks_mcp/api/
  2. Register tool in databricks_mcp/server/databricks_mcp_server.py:
@self.tool(
    name="your_tool_name",
    description="What your tool does with parameters: param1 (required), param2 (optional)"
)
async def your_tool(params: Dict[str, Any]) -> List[TextContent]:
    try:
        actual_params = _unwrap_params(params)
        result = await your_api_module.your_function(actual_params)
        return [{"type": "text", "text": json.dumps(result)}]
    except Exception as e:
        logger.error(f"Error: {str(e)}")
        return [{"type": "text", "text": json.dumps({"error": str(e)})}]

Documentation

Setup & Installation

Development & Publishing

Requirements

  • Python >=3.10
  • mcp[cli] >=1.2.0
  • httpx
  • databricks-sdk
  • pytest (dev)
  • black (dev)
  • pylint (dev)

License

MIT License - See LICENSE file for details

Acknowledgments

PyPI Package: databricks-mcp-genie Source Repository: https://github.com/sidart10/databrics-mcp-server Maintainer: Sid Original Author: Olivier Debeuf De Rijcker (databricks-mcp)

Special thanks to:

  • Olivier Debeuf De Rijcker for the original databricks-mcp implementation
  • Anthropic for Claude and the MCP protocol
  • Databricks for their comprehensive SDK and Genie AI
  • The open source community

Built with Claude Code - AI-assisted development tool by Anthropic

About

MCP server for Databricks integration. Production-ready connector for data platform automation.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •