Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dataset for Prostate Cancer #1

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,38 @@
## Branch info

Dataset for [Prostate Cancer Dataset](https://promise12.grand-challenge.org)

### Usage

```python
import torch
from promise import Promise2dDataset
import skimage.transform
import numpy as np

def train_transform(input, target):
input = skimage.transform.resize(input, (320, 320), mode='constant')
target = skimage.transform.resize(target, (320, 320), mode='constant')
if np.random.random() < 0.5:
input = np.flip(input, 1).copy()
target = np.flip(target, 1).copy()
input = torch.from_numpy(input).unsqueeze(0)
target = torch.from_numpy(target).unsqueeze(0)
return input, target

def valid_transform(input, target):
input = skimage.transform.resize(input, (320, 320))
target = skimage.transform.resize(target, (320, 320))
input = torch.from_numpy(input).unsqueeze(0)
target = torch.from_numpy(target).unsqueeze(0)
return input, target

trainset = Promise2dDataset('promisedata/train', train=True, threshold=0,
split=0.7, transform=train_transform)
validset = Promise2dDataset('promisedata/train', train=False, threshold=0,
split=0.7, transform=valid_transform)
```

# UNet-Zoo
A collection of UNet and hybrid architectures for 2D and 3D Biomedical Image segmentation, implemented in PyTorch.

Expand Down
40 changes: 40 additions & 0 deletions promise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import torch.utils.data
import SimpleITK as sitk
import numpy as np
import os
import skimage.transform

class Promise2dDataset(torch.utils.data.Dataset):
def __init__(self, root, threshold = 0, train=True, split= 0.7, transform=None):
self.transform = transform

files = [(os.path.join(root, j), os.path.join(root, j[:-4] + '_segmentation.mhd'))
for j in os.listdir(root) if j.endswith('mhd') and len(j) == 10]

if train:
files = files[:int(len(files) * split)]
else:
files = files[int(len(files) * split):]
x, y = [], []
for f1, f2 in files:
ctscans = sitk.GetArrayFromImage(sitk.ReadImage(f1))
segmaps = sitk.GetArrayFromImage(sitk.ReadImage(f2))
fractions = np.mean(segmaps, axis=(1,2))
for j in range(len(fractions)):
if fractions[j] > threshold:
x.append(ctscans[j])
y.append(segmaps[j])

self.X = x
self.Y = y

def __len__(self):
return len(self.X)

def __getitem__(self, index):
input = self.X[index].astype(float)
target = self.Y[index].astype(float)
if self.transform:
input, target = self.transform(input, target)
return input, target

46 changes: 46 additions & 0 deletions test_promise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
from promise import Promise2dDataset
import torch
import numpy as np
import skimage.transform
import matplotlib.pyplot as plt

def train_transform(input, target):
input = skimage.transform.resize(input, (320, 320), mode='constant')
target = skimage.transform.resize(target, (320, 320), mode='constant')
if np.random.random() < 0.5:
input = np.flip(input, 1).copy()
target = np.flip(target, 1).copy()
input = torch.from_numpy(input).unsqueeze(0)
target = torch.from_numpy(target).unsqueeze(0)
return input, target

def valid_transform(input, target):
input = skimage.transform.resize(input, (320, 320), mode='constant')
target = skimage.transform.resize(target, (320, 320), mode='constant')
input = torch.from_numpy(input).unsqueeze(0)
target = torch.from_numpy(target).unsqueeze(0)
return input, target

trainset = Promise2dDataset('promisedata/train', train=True, threshold=0,
split=0.7, transform=train_transform)
validset = Promise2dDataset('promisedata/train', train=False, threshold=0,
split=0.7, transform=valid_transform)


p, q = trainset[0]
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(p.squeeze(), cmap=plt.cm.gray)
ax2.imshow(q.squeeze(), cmap=plt.cm.gray)
plt.show()

train_iter = torch.utils.data.DataLoader(trainset, batch_size=32)
val_iter = torch.utils.data.DataLoader(validset, batch_size=32)

for p, q in train_iter:
print(p.shape, p.max(), p.min())
print(q.shape, q.max(), q.min())


for p, q in val_iter:
print(p.shape, p.max(), p.min())
print(q.shape, q.max(), q.min())