-
一千张植物图片已收集标注完毕,并整理完数据集类别表;
-
生成了数据集相关的注释和划分文件、密度图,项目数据集结构如下:
our_data ├── Train_Val_Test.json ├── annotations.json ├── gt_density_maps └── images
-
数据集已上传至谷歌网盘
已成功复现5个模型,模型复现结果如下:
-
train:MAE: 8.63, rMAE: 0.58, RMSE: 12.36, rRMSE: 0.95, R2: 0.59, FLOPS: 83.8G val: MAE: 7.51, rMAE: 0.43, RMSE: 11.00, rRMSE: 0.65, R2: 0.57, FLOPS: 78.7G test: MAE: 6.47, rMAE: 0.50, RMSE: 12.00, rRMSE: 0.71, R2: 0.87, FLOPS: 68.4G
-
[23:14:23.329991]Averaged stats: [23:14:23.330031]MAE:5.25,RMSE:7.37,rMAE:0.42,rRMSE:0.44,R2:0.95 [23:14:23.330043] FLOPs Summary: 失败的总结: [23:14:23.330057]Total FLOPs for all samples: 67.9290 TFLOPs[23:14:23.330057]所有样品的总FLOPs: 67.9290 TFLOPs [23:14:23.330069]Average FLOPs per sample:449.8607 GFLOPs [23:14:23.330089]Min sample FLOPs:177.5921 GFLOPs [23:14:23.330102]MaX Sample FLOPs:1509.5326 GFLOPs [23:14:23.330367]Median sample FLOPs:443.9802 GFLOPs [23:14:23.330393]Testing time 0:00:57
-
lr=1e-5: train:MAE: 9.07 , rMAE: 0.4213, RMSE: 13.21, rRMSE: 0.6139, R²: 0.5318, FLOPS: 133.4948G val: MAE: 10.02, rMAE: 0.4845, RMSE: 15.03, rRMSE: 0.7269, R²: 0.1955, FLOPS: 133.4948G test: MAE: 13.41, rMAE: 0.8094, RMSE: 33.31, rRMSE: 2.0101, R²: 0.0251, FLOPS: 133.4948G
-
[2025-06-14 15:00:12 SPDCN](val.py 176): INFO * MAE 10.505 RMSE 15.547 [2025-06-14 15:00:12 SPDCN](val.py 177): INFO * rMAE 0.643 rRMSE 0.754 [2025-06-14 15:00:12 SPDCN](val.py 178): INFO * R2 0.759 [2025-06-14 15:00:12 SPDCN](val.py 180): INFO * Average FLOPs per sample: 70.45G [2025-06-14 15:00:12 SPDCN](val.py 181): INFO * Median sample FLOPs: 563.61G
-
Train:MAE: 10.53, rMAE: 0.4893, RMSE: 16.42, rRMSE: 0.7630, R2: 0.2768, FLOPS: 5712.09G Val: MAE: 6.77 , rMAE: 0.3275, RMSE: 9.10 , rRMSE: 0.4403, R2: 0.7049, FLOPS: 5712.09G Test: MAE: 6.74 , rMAE: 0.4069, RMSE: 10.56, rRMSE: 0.6375, R2: 0.9019, FLOPS: 5712.09G
- 代码见
\Demo
,基于flask
实现,运行后在浏览器打开生成的网址 - 基于可视化效果最优的
GeCo
实现 - 由于GeCo显存占用大,因此还开发了基于
CACViT
的轻便版本(demo_CACVIT.py
、predictor_CACVIT.py
、\templates\demo_CACVIT.html
) - 示例
./demo.mp4