Skip to content

shardie-github/AgentMeshCloud

Repository files navigation

AgentMesh Cloud - Global AI Platform Builder

A fully adaptive, multi-cloud, self-optimizing AI platform integrating partner ecosystems, AI-driven observability, cross-domain agents, and continuous autonomy.

πŸš€ Overview

AgentMesh Cloud has been extended into a comprehensive AI-native enterprise operating system that provides:

  • Adaptive AI Autonomy - Dynamic inference routing with model-agnostic LLM selection
  • Universal API Network - Partner ecosystem integration with federated gateway
  • Intelligence Engine - Predictive orchestration and agentic knowledge graphs
  • Digital Twin Infrastructure - System simulation and stress testing capabilities
  • AI Governance & Trust Framework - Transparent governance with automated compliance

πŸ—οΈ Architecture

Core Components

1. Ecosystem Module (/ecosystem)

  • Adaptive Inference Router - Multi-LLM selection with auto-fallback
  • Federated Gateway Service - Third-party agent integration
  • Knowledge Graph Service - Agentic knowledge graph with vector search
  • Partner Marketplace Service - Partner integration and revenue sharing

2. Digital Twin Module (/digital-twin)

  • System Digital Twin - Complete system mirroring
  • Scenario Testing Lab - Agentic stress testing
  • Predictive Energy Optimization - Cost and COβ‚‚ impact optimization

3. AIOps Module (/aiops)

  • Self-Healing Pipeline Agent - Fault detection and auto-rollback
  • Real-Time Ethical Compliance Agent - Bias, drift, and privacy monitoring
  • Predictive Orchestration Engine - Dynamic resource allocation

4. Partners Module (/partners)

  • Partner Portal - Marketplace and API publisher center
  • Revenue Sharing System - Automated partner compensation
  • SDK Generator - Partner development tools

Technology Stack

  • Backend: Node.js, TypeScript, Express.js
  • Database: Supabase (PostgreSQL with pgvector)
  • Message Queue: Kafka, NATS
  • Cache: Redis
  • Monitoring: Prometheus, Grafana
  • AI/ML: OpenAI, Anthropic, Google Gemini, Cohere, Hugging Face
  • Vector Search: pgvector, VectorHub integration
  • Containerization: Docker, Kubernetes
  • CI/CD: GitHub Actions, automated deployment

πŸš€ Quick Start

Prerequisites

  • Node.js 18+
  • npm 8+
  • Docker (optional)
  • Supabase account
  • Redis instance
  • Kafka cluster (optional)

Installation

  1. Clone the repository

    git clone <repository-url>
    cd agentmesh-cloud
  2. Install dependencies

    npm install
  3. Set up environment variables

    cp .env.example .env
    # Edit .env with your configuration
  4. Start the development environment

    npm run dev

Environment Variables

# Database
SUPABASE_URL=your_supabase_url
SUPABASE_ANON_KEY=your_supabase_anon_key
SUPABASE_SERVICE_KEY=your_supabase_service_key

# LLM Providers
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key
GOOGLE_API_KEY=your_google_key
COHERE_API_KEY=your_cohere_key
HUGGINGFACE_API_KEY=your_huggingface_key

# Infrastructure
REDIS_URL=redis://localhost:6379
KAFKA_BROKERS=localhost:9092
NATS_URL=nats://localhost:4222

# Security
JWT_SECRET=your_jwt_secret
ENCRYPTION_KEY=your_encryption_key

πŸ“š API Documentation

Inference Router API

Route Inference Request

POST /api/v1/inference/route
Content-Type: application/json

{
  "prompt": "What is the capital of France?",
  "model": "gpt-4",
  "provider": "openai",
  "parameters": {
    "temperature": 0.7,
    "maxTokens": 100
  },
  "priority": "normal"
}

Get Available Providers

GET /api/v1/inference/providers

Knowledge Graph API

Create Knowledge Node

POST /api/v1/knowledge/nodes
Content-Type: application/json

{
  "type": "concept",
  "content": "Artificial Intelligence is the simulation of human intelligence in machines",
  "metadata": {
    "title": "Artificial Intelligence",
    "description": "Definition of AI",
    "domain": "technology"
  },
  "tags": ["ai", "technology", "definition"]
}

Search Knowledge Graph

POST /api/v1/knowledge/search
Content-Type: application/json

{
  "text": "machine learning algorithms",
  "type": "semantic",
  "filters": {
    "nodeTypes": ["concept", "entity"],
    "confidence": { "min": 0.8 }
  },
  "options": {
    "limit": 10,
    "sortBy": "relevance"
  }
}

Partner Marketplace API

List Available Partners

GET /api/v1/partners/marketplace

Register New Partner

POST /api/v1/partners/register
Content-Type: application/json

{
  "name": "AI Solutions Inc",
  "description": "Specialized AI consulting services",
  "capabilities": ["nlp", "computer-vision", "predictive-analytics"],
  "pricing": {
    "type": "per_request",
    "cost": 0.01
  }
}

πŸ”§ Configuration

Feature Flags

Control which features are enabled:

FEATURE_INFERENCE_ROUTER=true
FEATURE_FEDERATED_GATEWAY=true
FEATURE_KNOWLEDGE_GRAPH=true
FEATURE_PARTNER_MARKETPLACE=true
FEATURE_DIGITAL_TWIN=true
FEATURE_AIOPS=true
FEATURE_COMPLIANCE_AUTOMATION=true

Provider Configuration

Configure LLM providers:

OPENAI_ENABLED=true
OPENAI_PRIORITY=1
OPENAI_WEIGHT=1.0

ANTHROPIC_ENABLED=true
ANTHROPIC_PRIORITY=2
ANTHROPIC_WEIGHT=0.9

GOOGLE_ENABLED=true
GOOGLE_PRIORITY=3
GOOGLE_WEIGHT=0.8

πŸ§ͺ Testing

Run Tests

# Run all tests
npm test

# Run specific module tests
npm test -- --grep "ecosystem"
npm test -- --grep "digital-twin"
npm test -- --grep "aiops"
npm test -- --grep "partners"

Load Testing

# Test inference router performance
npm run test:load:inference

# Test knowledge graph performance
npm run test:load:knowledge

# Test partner marketplace performance
npm run test:load:partners

πŸ“Š Monitoring

Health Checks

  • Ecosystem Service: http://localhost:3002/health
  • Digital Twin Service: http://localhost:3003/health
  • AIOps Service: http://localhost:3004/health
  • Partners Service: http://localhost:3005/health

Metrics

  • Prometheus: http://localhost:9090/metrics
  • Grafana Dashboard: http://localhost:3000

Logs

# View ecosystem logs
npm run logs:ecosystem

# View digital twin logs
npm run logs:digital-twin

# View AIOps logs
npm run logs:aiops

# View partners logs
npm run logs:partners

πŸš€ Deployment

Docker Deployment

# Build all services
docker-compose build

# Start all services
docker-compose up -d

# Scale specific services
docker-compose up -d --scale ecosystem=3

Kubernetes Deployment

# Apply Kubernetes manifests
kubectl apply -f k8s/

# Check deployment status
kubectl get pods -l app=agentmesh-cloud

# Scale deployments
kubectl scale deployment ecosystem --replicas=5

Multi-Cloud Deployment

# Deploy to AWS
npm run deploy:aws

# Deploy to GCP
npm run deploy:gcp

# Deploy to Azure
npm run deploy:azure

πŸ”’ Security

Authentication & Authorization

  • JWT-based authentication
  • Role-based access control (RBAC)
  • Tenant isolation
  • API key management

Data Protection

  • End-to-end encryption
  • Data residency controls
  • Privacy-preserving analytics
  • Automated data anonymization

Compliance

  • SOC 2 Type II automation
  • ISO 27001 compliance
  • GDPR compliance
  • HIPAA compliance (healthcare)

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

Development Guidelines

  • Follow TypeScript best practices
  • Write comprehensive tests
  • Document all APIs
  • Follow the existing code style
  • Update documentation

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

πŸ—ΊοΈ Roadmap

Phase 1: Core Platform (Q1 2025)

  • βœ… Adaptive Inference Router
  • βœ… Knowledge Graph Service
  • βœ… Partner Marketplace
  • πŸ”„ Digital Twin Framework
  • πŸ”„ AIOps Self-Healing

Phase 2: Advanced Features (Q2 2025)

  • πŸ”„ Multi-Cloud Orchestration
  • πŸ”„ Advanced Analytics
  • πŸ”„ Compliance Automation
  • πŸ”„ Edge Computing Support

Phase 3: Enterprise Features (Q3 2025)

  • πŸ”„ Enterprise SSO
  • πŸ”„ Advanced Security
  • πŸ”„ Custom Model Training
  • πŸ”„ White-label Solutions

Phase 4: AI-Native OS (Q4 2025)

  • πŸ”„ Autonomous Operations
  • πŸ”„ Self-Improving Systems
  • πŸ”„ Global Intelligence Network
  • πŸ”„ Quantum-Ready Architecture

πŸ™ Acknowledgments

  • OpenAI for GPT models
  • Anthropic for Claude models
  • Google for Gemini models
  • Supabase for backend infrastructure
  • The open-source community for various libraries and tools

AgentMesh Cloud - Building the future of AI-native enterprise operations.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •