Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/sglang/srt/configs/model_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ def __init__(
if (
"DeepseekV2ForCausalLM" in self.hf_config.architectures
or "DeepseekV3ForCausalLM" in self.hf_config.architectures
or "DeepseekV3ForCausalLMNextN" in self.hf_config.architectures
):
self.head_dim = 256
self.attention_arch = AttentionArch.MLA
Expand Down
295 changes: 295 additions & 0 deletions python/sglang/srt/models/deepseek_nextn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Inference-only DeepSeek NextN Speculative Decoding."""
from typing import Iterable, Optional, Tuple

import torch
from torch import nn
from transformers import PretrainedConfig
from vllm import _custom_ops as ops

from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import ReplicatedLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.quantization.fp8_utils import (
block_quant_to_tensor_quant,
normalize_e4m3fn_to_e4m3fnuz,
)
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.deepseek_v2 import DeepseekV2DecoderLayer, DeepseekV3ForCausalLM
from sglang.srt.utils import is_hip

is_hip_ = is_hip()


class DeepseekModelNextN(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.vocab_size = config.vocab_size

self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
enable_tp=not global_server_args_dict["enable_dp_attention"],
)

self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

self.eh_proj = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=False)

self.decoder = DeepseekV2DecoderLayer(
config, 0, quant_config=quant_config, is_nextn=True
)

self.shared_head = nn.Module()
self.shared_head.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds

hidden_states = self.eh_proj(
torch.cat(
(
self.enorm(hidden_states),
self.hnorm(forward_batch.spec_info.hidden_states),
),
dim=-1,
)
)

residual = None
hidden_states, residual = self.decoder(
positions, hidden_states, forward_batch, residual
)

if not forward_batch.forward_mode.is_idle():
hidden_states, _ = self.shared_head.norm(hidden_states, residual)
return hidden_states


class DeepseekV3ForCausalLMNextN(DeepseekV3ForCausalLM):

def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
nn.Module.__init__(self)
self.config = config
self.quant_config = quant_config

self.model = DeepseekModelNextN(config, quant_config)

if global_server_args_dict["enable_dp_attention"]:
self.model.shared_head.head = ReplicatedLinear(
config.hidden_size,
config.vocab_size,
bias=False,
)
self.logits_processor = LogitsProcessor(config, skip_all_gather=True)
else:
self.model.shared_head.head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
)
self.logits_processor = LogitsProcessor(config)

@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, forward_batch)
return self.logits_processor(
input_ids, hidden_states, self.model.shared_head.head, forward_batch
)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
if hasattr(self.config, "num_nextn_predict_layers"):
num_nextn_layers = self.config.num_nextn_predict_layers
assert num_nextn_layers == 1, "Only 1 nextn layer is supportted"
assert num_nextn_layers == self.config.num_hidden_layers
else:
raise ValueError("num_nextn_predict_layers is not in the config")

stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]

# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
expert_params_mapping = MoEImpl.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts,
)

nextn_layer_prefix = "model.layers.0"
nextn_spec_weight_names = [
"shared_head.head",
"shared_head.norm",
"eh_proj",
"embed_tokens",
"enorm",
"hnorm",
]

params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if not name.startswith(nextn_layer_prefix):
continue
else:
is_decoder = True
# For nextn specific weights
for weight_name in nextn_spec_weight_names:
if weight_name in name:
name = name.replace(nextn_layer_prefix, "model")
is_decoder = False
break
# For decoder layer weights
if is_decoder:
name = name.replace(nextn_layer_prefix, "model.decoder")

if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if ("mlp.experts." in name) and name not in params_dict:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue

param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)

if not global_server_args_dict["disable_mla"]:
self_attn = self.model.decoder.self_attn
if hasattr(self_attn.kv_b_proj, "qweight"):
# AWQ compatible
w = ops.awq_dequantize(
self_attn.kv_b_proj.qweight,
self_attn.kv_b_proj.scales,
self_attn.kv_b_proj.qzeros,
0,
0,
0,
).T
else:
w = self_attn.kv_b_proj.weight
# NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
# This may affect the accuracy of fp8 model.
if hasattr(self.quant_config, "weight_block_size") and w.dtype in (
torch.float8_e4m3fn,
torch.float8_e4m3fnuz,
):
weight_block_size = self.quant_config.weight_block_size
if weight_block_size is not None:
assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
if is_hip_:
weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
weight=w,
weight_scale=self_attn.kv_b_proj.weight_scale_inv,
input_scale=None,
)
else:
weight = w
weight_scale = self_attn.kv_b_proj.weight_scale_inv

w, scale = block_quant_to_tensor_quant(
weight, weight_scale, weight_block_size
)
self_attn.w_scale = scale
w_kc, w_vc = w.unflatten(
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
if (
hasattr(self_attn.kv_b_proj, "weight_scale")
and self_attn.w_scale is None
):
self_attn.w_scale = self_attn.kv_b_proj.weight_scale
if is_hip_:
self_attn.w_scale *= 2.0


EntryClass = [DeepseekV3ForCausalLMNextN]
5 changes: 4 additions & 1 deletion python/sglang/srt/models/deepseek_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -519,6 +519,8 @@ def forward(
# Triton: Use normal computation for prefill and use weight absorption for extend/decode
if (
forward_batch.forward_mode.is_extend()
and not forward_batch.forward_mode.is_target_verify()
and not forward_batch.forward_mode.is_draft_extend()
and forward_batch.extend_prefix_lens.sum() == 0
):
return self.forward_normal(positions, hidden_states, forward_batch)
Expand Down Expand Up @@ -680,6 +682,7 @@ def __init__(
config: PretrainedConfig,
layer_id: int,
quant_config: Optional[QuantizationConfig] = None,
is_nextn: bool = False,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
Expand Down Expand Up @@ -731,7 +734,7 @@ def __init__(
quant_config=quant_config,
layer_id=layer_id,
)
if (
if is_nextn or (
config.n_routed_experts is not None
and layer_id >= config.first_k_dense_replace
and layer_id % config.moe_layer_freq == 0
Expand Down
9 changes: 6 additions & 3 deletions python/sglang/srt/server_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,14 +262,17 @@ def __post_init__(self):
)

# Speculative Decoding
if self.speculative_algorithm == "EAGLE":
if (
self.speculative_algorithm == "EAGLE"
or self.speculative_algorithm == "NEXTN"
):
self.prefill_only_one_req = True
self.disable_cuda_graph_padding = True
self.disable_radix_cache = True
self.disable_overlap_schedule = True
self.chunked_prefill_size = -1
logger.info(
"The radix cache, chunked prefill, and overlap scheduler are disabled because of using eagle speculative decoding."
f"The radix cache, chunked prefill, and overlap scheduler are disabled because of using {self.speculative_algorithm} speculative decoding."
)

# GGUF
Expand Down Expand Up @@ -705,7 +708,7 @@ def add_cli_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--speculative-algorithm",
type=str,
choices=["EAGLE"],
choices=["EAGLE", "NEXTN"],
help="Speculative algorithm.",
)
parser.add_argument(
Expand Down
9 changes: 7 additions & 2 deletions python/sglang/srt/speculative/eagle_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
fast_topk,
select_top_k_tokens,
)
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -57,11 +58,15 @@ def __init__(
# Parse arguments
self.topk = server_args.speculative_eagle_topk
self.speculative_num_steps = server_args.speculative_num_steps
self.speculative_algorithm = SpeculativeAlgorithm.from_string(
server_args.speculative_algorithm
)
self.server_args = server_args

# Share the embedding and lm_head
embed, head = self.target_worker.model_runner.model.get_embed_and_head()
self.model_runner.model.set_embed_and_head(embed, head)
if not self.speculative_algorithm.is_nextn():
embed, head = self.target_worker.model_runner.model.get_embed_and_head()
self.model_runner.model.set_embed_and_head(embed, head)
self.model_runner.server_args.disable_cuda_graph = backup_disable_cuda_graph

# Create multi-step attn backends and cuda graph runners
Expand Down
Loading
Loading