- This is a simple ONNX model inference runtime.
- This is a just toy project for my study.
- cmake (>= 3.15)
- OpenCV (>= 4.0.0)
- protobuf (>= 3.9.1)
- An ONNX file for Multilayer Perceptron model
Note that I have tested this script with the ONNX model trained with Chainer mnist example and exported with onnx-chainer.
Regarding other onnx models, all of them are not gurunteed working well.
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
# {Download images from http://yann.lecun.com/exdb/mnist/}
# {Convert the binary to jpg image}
./example/mnist_mlp.o -i /path/to/mnist/image -m /path/to/onnx_model
Note that I have tested this script only with the following models with ImageNet image resized with 224 x 224.
Regarding other onnx models, all of them are not gurunteed working well.
- onnx/models/vgg/vgg19/release 1.1
- onnx/models/vgg/vgg19/release 1.1.2
- onnx/models/vgg/vgg19/release 1.2
- onnx/models/vgg/vgg19/release 1.3
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
# {Download imagenet image from http://image-net.org/synset}
# {Resize the images to 224 x 224}
./example/imagenet_vgg19.o -i /path/to/image_net/image -m /path/to/onnx_model
cd inference_engine/test
git submodule update
make
- Gemm
- Relu
- Convolution
- MaxPooling
- Dropout
- Softmax
- Reshape (provisional support)
MIT