scale function(_get_mean_var) updated for dense array, speedup upto ~4.65x #3099
Build #20240626.3 had test failures
Details
- Failed: 18 (0.25%)
- Passed: 6,518 (91.65%)
- Other: 576 (8.10%)
- Total: 7,112
- 9556 of 12552 line covered (76.13%)
Annotations
Check failure on line 2042 in Build log
azure-pipelines / scverse.scanpy
Build log #L2042
Bash exited with code '1'.
Check failure on line 2176 in Build log
azure-pipelines / scverse.scanpy
Build log #L2176
Bash exited with code '1'.
Check failure on line 2504 in Build log
azure-pipelines / scverse.scanpy
Build log #L2504
Bash exited with code '1'.
Check failure on line 1849 in Build log
azure-pipelines / scverse.scanpy
Build log #L1849
Bash exited with code '132'.
Check failure on line 1 in tests/test_score_genes.py::test_score_with_reference
azure-pipelines / scverse.scanpy
tests/test_score_genes.py::test_score_with_reference
def test_score_with_reference():
"""
Checks if score_genes output agrees with pre-computed reference values.
The reference values had been generated using the same code
and stored as a pickle object in ./data
"""
adata = paul15()
sc.pp.normalize_per_cell(adata, counts_per_cell_after=10000)
sc.pp.scale(adata)
sc.tl.score_genes(adata, gene_list=adata.var_names[:100], score_name="Test")
with (HERE / "score_genes_reference_paul2015.pkl").open("rb") as file:
reference = pickle.load(file)
# np.testing.assert_allclose(reference, adata.obs["Test"].to_numpy())
> np.testing.assert_array_equal(reference, adata.obs["Test"].to_numpy())
tests/test_score_genes.py:77:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
args = (<built-in function eq>, array([-0.2027711941, -0.0095327853, -0.0092715188, ..., 0.2243069104,
-0.0767864967,...61957]), array([-0.2327050515, 0.0162357776, -0.0057529853, ..., 0.1831248169,
-0.0875716893, -0.0273508919]))
kwds = {'err_msg': '', 'header': 'Arrays are not equal', 'strict': False, 'verbose': True}
@wraps(func)
def inner(*args, **kwds):
with self._recreate_cm():
> return func(*args, **kwds)
E AssertionError:
E Arrays are not equal
E
E Mismatched elements: 2730 / 2730 (100%)
E Max absolute difference: 0.1607912583
E Max relative difference: 1538.698935321
E x: array([-0.202771, -0.009533, -0.009272, ..., 0.224307, -0.076786,
E -0.012066])
E y: array([-0.232705, 0.016236, -0.005753, ..., 0.183125, -0.087572,
E -0.027351])
/opt/hostedtoolcache/Python/3.12.4/x64/lib/python3.12/contextlib.py:81: AssertionError
Raw output
/opt/hostedtoolcache/Python/3.12.4/x64/lib/python3.12/contextlib.py:81: AssertionError:
Check failure on line 1 in tests/test_score_genes.py::test_score_with_reference
azure-pipelines / scverse.scanpy
tests/test_score_genes.py::test_score_with_reference
def test_score_with_reference():
"""
Checks if score_genes output agrees with pre-computed reference values.
The reference values had been generated using the same code
and stored as a pickle object in ./data
"""
adata = paul15()
sc.pp.normalize_per_cell(adata, counts_per_cell_after=10000)
sc.pp.scale(adata)
sc.tl.score_genes(adata, gene_list=adata.var_names[:100], score_name="Test")
with (HERE / "score_genes_reference_paul2015.pkl").open("rb") as file:
reference = pickle.load(file)
# np.testing.assert_allclose(reference, adata.obs["Test"].to_numpy())
> np.testing.assert_array_equal(reference, adata.obs["Test"].to_numpy())
tests/test_score_genes.py:77:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
args = (<built-in function eq>, array([-0.2027711941, -0.0095327853, -0.0092715188, ..., 0.2243069104,
-0.0767864967,...61957]), array([-0.2327050515, 0.0162357776, -0.0057529853, ..., 0.1831248169,
-0.0875716893, -0.0273508919]))
kwds = {'err_msg': '', 'header': 'Arrays are not equal', 'strict': False, 'verbose': True}
@wraps(func)
def inner(*args, **kwds):
with self._recreate_cm():
> return func(*args, **kwds)
E AssertionError:
E Arrays are not equal
E
E Mismatched elements: 2730 / 2730 (100%)
E Max absolute difference: 0.1607912583
E Max relative difference: 1538.698935321
E x: array([-0.202771, -0.009533, -0.009272, ..., 0.224307, -0.076786,
E -0.012066])
E y: array([-0.232705, 0.016236, -0.005753, ..., 0.183125, -0.087572,
E -0.027351])
/opt/hostedtoolcache/Python/3.12.4/x64/lib/python3.12/contextlib.py:81: AssertionError
Raw output
/opt/hostedtoolcache/Python/3.12.4/x64/lib/python3.12/contextlib.py:81: AssertionError:
Check failure on line 1 in tests/test_score_genes.py::test_score_with_reference
azure-pipelines / scverse.scanpy
tests/test_score_genes.py::test_score_with_reference
def test_score_with_reference():
"""
Checks if score_genes output agrees with pre-computed reference values.
The reference values had been generated using the same code
and stored as a pickle object in ./data
"""
adata = paul15()
sc.pp.normalize_per_cell(adata, counts_per_cell_after=10000)
sc.pp.scale(adata)
sc.tl.score_genes(adata, gene_list=adata.var_names[:100], score_name="Test")
with (HERE / "score_genes_reference_paul2015.pkl").open("rb") as file:
reference = pickle.load(file)
# np.testing.assert_allclose(reference, adata.obs["Test"].to_numpy())
> np.testing.assert_array_equal(reference, adata.obs["Test"].to_numpy())
E AssertionError:
E Arrays are not equal
E
E Mismatched elements: 2730 / 2730 (100%)
E Max absolute difference: 0.1607912583
E Max relative difference: 1538.698935321
E x: array([-0.202771, -0.009533, -0.009272, ..., 0.224307, -0.076786,
E -0.012066])
E y: array([-0.232705, 0.016236, -0.005753, ..., 0.183125, -0.087572,
E -0.027351])
tests/test_score_genes.py:77: AssertionError
Raw output
/home/vsts/work/1/s/tests/test_score_genes.py:77: AssertionError:
Check failure on line 1 in tests/test_backed.py::test_backed_error[sparse-pca]
azure-pipelines / scverse.scanpy
tests/test_backed.py::test_backed_error[sparse-pca]
Test failed