Skip to content

scottyd22/toddler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

toddler

toddler provides simple functions to format data frames prior to sharing. Users can add empty rows, add empty columns, stack data frames, and format column names.

Installation

You can install this package from GitHub with:

devtools::install_github('scottyd22/toddler')

Using toddler

Below are some examples on how to use the toddler functions.

Add rows to a data frame using the add_empty_rows function.

library(dplyr)
library(toddler)

df <- mtcars[1:10,] %>% 
  arrange(gear, carb)

add_empty_rows(df, group = c('gear', 'carb'))
##     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1  21.4   6   258 110 3.08 3.215 19.44  1  0    3    1
## 2  18.1   6   225 105 2.76  3.46 20.22  1  0    3    1
## 3                                                     
## 4  18.7   8   360 175 3.15  3.44 17.02  0  0    3    2
## 5                                                     
## 6  14.3   8   360 245 3.21  3.57 15.84  0  0    3    4
## 7                                                     
## 8  22.8   4   108  93 3.85  2.32 18.61  1  1    4    1
## 9                                                     
## 10 24.4   4 146.7  62 3.69  3.19    20  1  0    4    2
## 11 22.8   4 140.8  95 3.92  3.15  22.9  1  0    4    2
## 12                                                    
## 13   21   6   160 110  3.9  2.62 16.46  0  1    4    4
## 14   21   6   160 110  3.9 2.875 17.02  0  1    4    4
## 15 19.2   6 167.6 123 3.92  3.44  18.3  1  0    4    4

Add empty columns to a data frame using the add_empty_cols function.

df <- mtcars[1:5, 1:6]
add_empty_cols(df, group = 2, n = 2)
##   col01 col02 col03 col04 col05 col06 col07 col08 col09 col10
## 1   mpg   cyl              disp    hp              drat    wt
## 2    21     6               160   110               3.9  2.62
## 3    21     6               160   110               3.9 2.875
## 4  22.8     4               108    93              3.85  2.32
## 5  21.4     6               258   110              3.08 3.215
## 6  18.7     8               360   175              3.15  3.44

Stack data frames into a single “tall” data frame using the df_stack function.

df1 <- mtcars[1:5, 1:6]
df2 <- iris[1:8,]
df_stack(list(df1, df2), n = 2)
##           col01       col02        col03       col04   col05 col06
## 1           mpg         cyl         disp          hp    drat    wt
## 2            21           6          160         110     3.9  2.62
## 3            21           6          160         110     3.9 2.875
## 4          22.8           4          108          93    3.85  2.32
## 5          21.4           6          258         110    3.08 3.215
## 6          18.7           8          360         175    3.15  3.44
## 7                                                                 
## 8                                                                 
## 9  Sepal.Length Sepal.Width Petal.Length Petal.Width Species      
## 10          5.1         3.5          1.4         0.2  setosa      
## 11          4.9           3          1.4         0.2  setosa      
## 12          4.7         3.2          1.3         0.2  setosa      
## 13          4.6         3.1          1.5         0.2  setosa      
## 14            5         3.6          1.4         0.2  setosa      
## 15          5.4         3.9          1.7         0.4  setosa      
## 16          4.6         3.4          1.4         0.3  setosa      
## 17            5         3.4          1.5         0.2  setosa

Format column names of a data frame using the prep_names function.

library(stringr)
a <- starwars
b <- prep_names(starwars, format = 'title', all_upper = c('height', 'Species'))

data.frame(starwars_columns = colnames(a),
           prep_names_columns = colnames(b))
##    starwars_columns prep_names_columns
## 1              name               Name
## 2            height             HEIGHT
## 3              mass               Mass
## 4        hair_color         Hair Color
## 5        skin_color         Skin Color
## 6         eye_color          Eye Color
## 7        birth_year         Birth Year
## 8            gender             Gender
## 9         homeworld          Homeworld
## 10          species            SPECIES
## 11            films              Films
## 12         vehicles           Vehicles
## 13        starships          Starships

About

Make clean data dirty (with a purpose)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages