A high-performance clustering and dimensionality reduction toolkit for Ruby, powered by best-in-class Rust implementations.
ClusterKit builds upon excellent work from the Rust ecosystem:
- annembed - Provides the core UMAP, t-SNE, and other dimensionality reduction algorithms. Created by Jean-Pierre Both.
- hdbscan - Provides the HDBSCAN density-based clustering implementation. A Rust port of the original HDBSCAN algorithm.
This gem would not be possible without these foundational libraries. Please consider starring their repositories if you find ClusterKit useful.
-
Dimensionality Reduction Algorithms:
- UMAP (Uniform Manifold Approximation and Projection) - powered by annembed
- PCA (Principal Component Analysis)
- SVD (Singular Value Decomposition)
-
Advanced Clustering:
- K-means clustering with automatic k selection via elbow method
- HDBSCAN (Hierarchical Density-Based Spatial Clustering) for density-based clustering with noise detection
- Silhouette scoring for cluster quality evaluation
-
High Performance:
- Leverages Rust's speed and parallelization
- Efficient memory usage
- Support for large datasets
-
Easy to Use:
- Simple, scikit-learn-like API
- Consistent interface across algorithms
- Comprehensive documentation and examples
-
Visualization Tools:
- Interactive HTML visualizations
- Comparison of different algorithms
- Built-in rake tasks for quick experimentation
ClusterKit organizes its functionality into clear modules:
ClusterKit::Dimensionality
- All dimensionality reduction algorithmsClusterKit::Dimensionality::UMAP
- UMAP implementationClusterKit::Dimensionality::PCA
- PCA implementationClusterKit::Dimensionality::SVD
- SVD implementation
ClusterKit::Clustering
- All clustering algorithmsClusterKit::Clustering::KMeans
- K-means clusteringClusterKit::Clustering::HDBSCAN
- HDBSCAN clustering
ClusterKit::Utils
- Utility functionsClusterKit::Preprocessing
- Data preprocessing tools
All user-facing classes are in these modules. Implementation details are kept private.
Add this line to your application's Gemfile:
gem 'clusterkit'
And then execute:
$ bundle install
Or install it yourself as:
$ gem install clusterkit
- Ruby 2.7 or higher
- Rust toolchain (for building from source)
Copy and paste this entire block into IRB to try out the main features (including the srand line for reproducible results):
require 'clusterkit'
# Generate sample high-dimensional data with structure
# This simulates real-world data like text embeddings or image features
puts "Creating sample data: 100 points in 50 dimensions with 3 clusters"
# Use a fixed seed for reproducibility in this example
# Important: Random data without structure can cause UMAP errors
srand(42)
# Create data with some inherent structure (3 clusters)
# Using better separated clusters to avoid UMAP convergence issues
data = []
3.times do |cluster|
# Each cluster has a different center, well-separated
center = Array.new(50) { rand * 0.1 + cluster * 2.0 }
# Add 33 points around each center with controlled noise
33.times do
point = center.map { |c| c + (rand - 0.5) * 0.3 }
data << point
end
end
# Add one more point to make it 100
data << Array.new(50) { rand * 6.0 } # Scale to match cluster range
# ============================================================
# 1. DIMENSIONALITY REDUCTION - Visualize high-dim data in 2D
# ============================================================
puts "\n1. DIMENSIONALITY REDUCTION:"
# UMAP - Best for preserving both local and global structure
puts "Running UMAP..."
# Note: Using n_neighbors=5 for better stability with varied data
# Lower n_neighbors helps avoid "isolated point" errors
umap = ClusterKit::Dimensionality::UMAP.new(n_components: 2, n_neighbors: 5)
umap_result = umap.fit_transform(data)
puts " ✓ Reduced to #{umap_result.first.size}D: #{umap_result[0..2].map { |p| p.map { |v| v.round(3) } }}"
# PCA - Fast linear reduction, good for finding main variations
puts "Running PCA..."
pca = ClusterKit::Dimensionality::PCA.new(n_components: 2)
pca_result = pca.fit_transform(data)
puts " ✓ Reduced to #{pca_result.first.size}D: #{pca_result[0..2].map { |p| p.map { |v| v.round(3) } }}"
puts " ✓ Explained variance: #{(pca.explained_variance_ratio.sum * 100).round(1)}%"
# ============================================================
# 2. CLUSTERING - Find groups in your data
# ============================================================
puts "\n2. CLUSTERING:"
# K-means - When you know roughly how many clusters to expect
puts "Running K-means..."
# First, find optimal k using elbow method
elbow_scores = ClusterKit::Clustering::KMeans.elbow_method(umap_result, k_range: 2..6)
optimal_k = ClusterKit::Clustering::KMeans.detect_optimal_k(elbow_scores)
puts " ✓ Optimal k detected: #{optimal_k}"
kmeans = ClusterKit::Clustering::KMeans.new(k: optimal_k)
kmeans_labels = kmeans.fit_predict(umap_result)
puts " ✓ Found #{kmeans_labels.uniq.size} clusters"
# HDBSCAN - When you don't know the number of clusters and have noise
puts "Running HDBSCAN..."
hdbscan = ClusterKit::Clustering::HDBSCAN.new(min_samples: 5, min_cluster_size: 10)
hdbscan_labels = hdbscan.fit_predict(umap_result)
puts " ✓ Found #{hdbscan.n_clusters} clusters"
puts " ✓ Identified #{hdbscan.n_noise_points} noise points (#{(hdbscan.noise_ratio * 100).round(1)}%)"
# ============================================================
# 3. EVALUATION - How good are the clusters?
# ============================================================
puts "\n3. CLUSTER EVALUATION:"
silhouette = ClusterKit::Clustering.silhouette_score(umap_result, kmeans_labels)
puts " K-means silhouette score: #{silhouette.round(3)} (closer to 1 is better)"
# Filter noise for HDBSCAN evaluation
non_noise = hdbscan_labels.each_with_index.select { |l, _| l != -1 }.map(&:last)
if non_noise.any?
filtered_data = non_noise.map { |i| umap_result[i] }
filtered_labels = non_noise.map { |i| hdbscan_labels[i] }
hdbscan_silhouette = ClusterKit::Clustering.silhouette_score(filtered_data, filtered_labels)
puts " HDBSCAN silhouette score: #{hdbscan_silhouette.round(3)} (excluding noise)"
end
puts "\n✅ All done! Try visualizing with: rake clusterkit:visualize"
ClusterKit organizes its algorithms into logical modules:
-
ClusterKit::Dimensionality
- Algorithms for reducing data dimensionsUMAP
- Non-linear manifold learningPCA
- Principal Component AnalysisSVD
- Singular Value Decomposition
-
ClusterKit::Clustering
- Algorithms for grouping dataKMeans
- Partition-based clusteringHDBSCAN
- Density-based clustering with noise detection
Important: UMAP requires data with some structure. Pure random data may fail. For testing, create data with patterns (see Quick Start example above).
# Generate sample data with structure (not pure random)
data = []
100.times do |i|
# Create points that cluster in groups
group = i / 25 # 4 groups
base = group * 2.0
point = Array.new(50) { |j| base + rand * 0.8 + j * 0.01 }
data << point
end
# Create UMAP instance
umap = ClusterKit::Dimensionality::UMAP.new(
n_components: 2, # Target dimensions (default: 2)
n_neighbors: 5, # Number of neighbors (default: 15, use 5 for small datasets)
random_seed: 42, # For reproducibility (default: nil for best performance)
nb_grad_batch: 10, # Gradient descent batches (default: 10, lower = faster)
nb_sampling_by_edge: 8 # Negative samples per edge (default: 8, lower = faster)
)
# Fit and transform data
embedded = umap.fit_transform(data)
# IMPORTANT: Seed behavior
# - WITH random_seed: Fully reproducible results using serial processing (slower)
# - WITHOUT random_seed: Faster parallel processing but non-deterministic results
# Or fit once and transform multiple datasets
# Example: Split your data into training and test sets
# Note: Using structured data (not pure random) for better UMAP results
all_data = []
200.times do |i|
# Create data with some structure - points cluster around different regions
center = (i / 50) * 2.0 # 4 rough groups
point = Array.new(50) { |j| center + rand * 0.5 + j * 0.01 }
all_data << point
end
training_data = all_data[0...150] # First 150 samples for training
test_data = all_data[150..-1] # Last 50 samples for testing
umap.fit(training_data)
test_embedded = umap.transform(test_data)
# Save and load fitted models
umap.save_model("umap_model.bin") # Save the fitted model
loaded_umap = ClusterKit::Dimensionality::UMAP.load_model("umap_model.bin") # Load it later
new_data_embedded = loaded_umap.transform(new_data) # Use loaded model for new data
# Save and load transformed data (useful for caching results)
ClusterKit::Dimensionality::UMAP.save_data(embedded, "embeddings.json")
cached_embeddings = ClusterKit::Dimensionality::UMAP.load_data("embeddings.json")
# Note: The library automatically adjusts n_neighbors if it's too large for your dataset
pca = ClusterKit::Dimensionality::PCA.new(n_components: 2)
transformed = pca.fit_transform(data)
# Access explained variance
puts "Explained variance ratio: #{pca.explained_variance_ratio}"
puts "Cumulative explained variance: #{pca.cumulative_explained_variance_ratio}"
# Inverse transform to reconstruct original data
reconstructed = pca.inverse_transform(transformed)
# Direct SVD decomposition using the class interface
svd = ClusterKit::Dimensionality::SVD.new(n_components: 10, n_iter: 5)
u, s, vt = svd.fit_transform(data)
# U: left singular vectors (documents in LSA)
# S: singular values (importance of each component)
# V^T: right singular vectors (terms in LSA)
puts "Shape of U: #{u.size}x#{u.first.size}"
puts "Singular values: #{s[0..4].map { |v| v.round(2) }}"
puts "Shape of V^T: #{vt.size}x#{vt.first.size}"
# For dimensionality reduction, use U * S
reduced = u.map.with_index do |row, i|
row.map.with_index { |val, j| val * s[j] }
end
# Or use the convenience method
u, s, vt = ClusterKit.svd(data, 10, n_iter: 5)
# Find optimal number of clusters
elbow_scores = ClusterKit::Clustering::KMeans.elbow_method(data, k_range: 2..10)
optimal_k = ClusterKit::Clustering::KMeans.detect_optimal_k(elbow_scores)
# Cluster with optimal k
kmeans = ClusterKit::Clustering::KMeans.new(k: optimal_k, random_seed: 42)
labels = kmeans.fit_predict(data)
# Access cluster centers
centers = kmeans.cluster_centers
# HDBSCAN automatically determines the number of clusters
# and can identify noise points
hdbscan = ClusterKit::Clustering::HDBSCAN.new(
min_samples: 5, # Minimum samples in neighborhood
min_cluster_size: 10, # Minimum cluster size
metric: 'euclidean' # Distance metric
)
labels = hdbscan.fit_predict(data)
# Noise points are labeled as -1
puts "Clusters found: #{hdbscan.n_clusters}"
puts "Noise points: #{hdbscan.n_noise_points} (#{(hdbscan.noise_ratio * 100).round(1)}%)"
# Access additional HDBSCAN information
probabilities = hdbscan.probabilities # Cluster membership probabilities
outlier_scores = hdbscan.outlier_scores # Outlier scores for each point
ClusterKit includes HNSW (Hierarchical Navigable Small World) for fast approximate nearest neighbor search, useful for building recommendation systems, similarity search, and as a building block for other algorithms.
Copy and paste this entire block into IRB to try HNSW with real embeddings:
require 'clusterkit'
require 'candle'
# Step 1: Initialize the embedding model
puts "Loading embedding model..."
embedding_model = Candle::EmbeddingModel.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2',
device: Candle::Device.best
)
puts " ✓ Model loaded: #{embedding_model.model_id}"
# Step 2: Create sample documents for semantic search
documents = [
"The cat sat on the mat",
"Dogs are loyal pets that love their owners",
"Machine learning algorithms can classify text documents",
"Natural language processing helps computers understand human language",
"Ruby is a programming language known for its simplicity",
"Python is popular for data science and machine learning",
"The weather today is sunny and warm",
"Climate change affects global weather patterns",
"Artificial intelligence is transforming many industries",
"Deep learning models require large amounts of training data",
"Cats and dogs are common household pets",
"Software engineering requires problem-solving skills",
"The ocean contains many different species of fish",
"Marine biology studies life in aquatic environments",
"Cooking requires understanding of ingredients and techniques"
]
puts "\nGenerating embeddings for #{documents.size} documents..."
# Step 3: Generate embeddings for all documents
embeddings = documents.map do |doc|
embedding_model.embedding(doc).first.to_a
end
puts " ✓ Generated embeddings: #{embeddings.first.count} dimensions each"
# Step 4: Create HNSW index
puts "\nBuilding HNSW search index..."
index = ClusterKit::HNSW.new(
dim: embeddings.first.count, # 384 dimensions for all-MiniLM-L6-v2
space: :euclidean,
m: 16, # Good balance of speed vs accuracy
ef_construction: 200, # Build quality
max_elements: documents.size,
random_seed: 42 # For reproducible results
)
# Step 5: Add all documents to the index
documents.each_with_index do |doc, i|
index.add_item(
embeddings[i],
label: "doc_#{i}",
metadata: {
'text' => doc,
'length' => doc.length,
'word_count' => doc.split.size
}
)
end
puts " ✓ Added #{documents.size} documents to index"
# Step 6: Perform semantic searches
puts "\n" + "="*50
puts "SEMANTIC SEARCH DEMO"
puts "="*50
queries = [
"pets and animals",
"computer programming",
"weather and environment"
]
queries.each do |query|
puts "\nQuery: '#{query}'"
puts "-" * 30
# Generate query embedding
query_embedding = embedding_model.embedding(query).first.to_a
# Search for similar documents
results = index.search_with_metadata(query_embedding, k: 3)
results.each_with_index do |result, i|
similarity = (1.0 - result[:distance]).round(3) # Convert distance to similarity
text = result[:metadata]['text']
puts " #{i+1}. [#{similarity}] #{text}"
end
end
# Step 7: Demonstrate advanced features
puts "\n" + "="*50
puts "ADVANCED FEATURES"
puts "="*50
# Show search quality adjustment
puts "\nAdjusting search quality (ef parameter):"
index.set_ef(50) # Lower ef = faster but potentially less accurate
fast_results = index.search(embeddings[0], k: 3)
puts " Fast search (ef=50): #{fast_results}"
index.set_ef(200) # Higher ef = slower but more accurate
accurate_results = index.search(embeddings[0], k: 3)
puts " Accurate search (ef=200): #{accurate_results}"
# Show batch operations
puts "\nBatch search example:"
query_embeddings = [embeddings[0], embeddings[5], embeddings[10]]
batch_results = query_embeddings.map { |emb| index.search(emb, k: 2) }
puts " Found #{batch_results.size} result sets"
# Save and load demonstration
puts "\nSaving and loading index:"
index.save('demo_index')
puts " ✓ Index saved to 'demo_index'"
loaded_index = ClusterKit::HNSW.load('demo_index')
test_results = loaded_index.search(embeddings[0], k: 2)
puts " ✓ Loaded index works: #{test_results}"
puts "\n✅ HNSW demo complete!"
puts "\nTry your own queries by running:"
puts "query_embedding = embedding_model.embedding('your search query').first.to_a"
puts "results = index.search_with_metadata(query_embedding, k: 5)"
HNSW is ideal for:
- Recommendation Systems: Find similar items/users quickly
- Semantic Search: Find documents with similar embeddings
- Duplicate Detection: Identify near-duplicate content
- Clustering Support: As a fast neighbor graph for HDBSCAN
- Real-time Applications: When you need sub-millisecond search times
# High recall (>0.95) - Best quality, slower
ClusterKit::HNSW.new(
dim: dim,
m: 32,
ef_construction: 400
).tap { |idx| idx.set_ef(100) }
# Balanced (>0.90 recall) - Good quality, fast
ClusterKit::HNSW.new(
dim: dim,
m: 16,
ef_construction: 200
).tap { |idx| idx.set_ef(50) }
# Speed optimized (>0.85 recall) - Fastest, acceptable quality
ClusterKit::HNSW.new(
dim: dim,
m: 8,
ef_construction: 100
).tap { |idx| idx.set_ef(20) }
- Memory Usage: HNSW keeps the entire index in memory. Estimate:
(num_items * (dim * 4 + m * 16))
bytes - Distance Metrics: Currently only Euclidean distance is fully supported
- Loading Behavior: Due to Rust lifetime constraints, loading an index creates a small memory leak (the index metadata persists until program exit). This is typically negligible for most applications.
- Build Time: Index construction is O(N * log(N)). For large datasets (>1M items), consider building offline
# Build a simple semantic search system
documents = load_documents()
embeddings = generate_embeddings(documents) # Use red-candle or similar
# Build search index
search_index = ClusterKit::HNSW.new(
dim: embeddings.first.size,
m: 16,
ef_construction: 200,
max_elements: documents.size
)
# Add all documents
documents.each_with_index do |doc, i|
search_index.add_item(
embeddings[i],
label: i,
metadata: { title: doc[:title], url: doc[:url] }
)
end
# Search function
def search(query, index, k: 10)
query_embedding = generate_embedding(query)
results = index.search_with_metadata(query_embedding, k: k)
results.map do |result|
{
title: result[:metadata]['title'],
url: result[:metadata]['url'],
similarity: 1.0 - result[:distance] # Convert distance to similarity
}
end
end
# Save for later use
search_index.save('document_index')
ClusterKit includes a built-in visualization tool:
# Generate interactive visualization
rake clusterkit:visualize
# With options
rake clusterkit:visualize[output.html,iris,both] # filename, dataset, clustering method
# Dataset options: clusters, swiss, iris
# Clustering options: kmeans, hdbscan, both
This creates an interactive HTML file with:
- Side-by-side comparison of dimensionality reduction methods
- Clustering results visualization
- Performance metrics
- Interactive Plotly.js charts
Algorithm | Best For | Pros | Cons |
---|---|---|---|
UMAP | General purpose, preserving both local and global structure | Fast, scalable, supports transform() | Requires tuning parameters |
PCA | Linear relationships, feature extraction | Very fast, interpretable, deterministic | Only captures linear relationships |
SVD | Text analysis (LSA), recommendation systems | Memory efficient, good for sparse data | Only linear relationships |
Algorithm | Best For | Pros | Cons |
---|---|---|---|
K-means | Spherical clusters, known cluster count | Fast, simple, deterministic with seed | Requires knowing k, assumes spherical clusters |
HDBSCAN | Unknown cluster count, irregular shapes, noise | Finds clusters automatically, handles noise | More complex parameters, slower than k-means |
- Document Clustering: UMAP (20D) → HDBSCAN
- Image Clustering: PCA (50D) → K-means
- Customer Segmentation: UMAP (10D) → K-means with elbow method
- Anomaly Detection: UMAP (5D) → HDBSCAN (outliers are noise points)
- Visualization: UMAP (2D) or PCA (2D) → visual inspection
# Typical NLP workflow: embed → reduce → cluster
documents = ["text1", "text2", ...] # Your documents
# Step 1: Get embeddings (use your favorite embedding model)
# embeddings = get_embeddings(documents) # e.g., from red-candle
# Step 2: Reduce dimensions for better clustering
umap = ClusterKit::Dimensionality::UMAP.new(n_components: 20, n_neighbors: 10)
reduced_embeddings = umap.fit_transform(embeddings)
# Step 3: Find clusters
hdbscan = ClusterKit::Clustering::HDBSCAN.new(
min_samples: 5,
min_cluster_size: 10
)
clusters = hdbscan.fit_predict(reduced_embeddings)
# Step 4: Analyze results
clusters.each_with_index do |cluster_id, doc_idx|
next if cluster_id == -1 # Skip noise
puts "Document '#{documents[doc_idx]}' belongs to cluster #{cluster_id}"
end
# Save trained model
umap.save("model.bin")
# Load trained model
loaded_umap = ClusterKit::Dimensionality::UMAP.load("model.bin")
result = loaded_umap.transform(new_data)
- Large Datasets: Use sampling for initial parameter tuning
- HDBSCAN: Reduce to 10-50 dimensions with UMAP first for better results
- Memory: Process in batches for very large datasets
- Speed: Compile with optimizations:
RUSTFLAGS="-C target-cpu=native" bundle install
ClusterKit's UMAP implementation offers two modes:
Mode | Usage | Performance | Reproducibility |
---|---|---|---|
Fast (default) | UMAP.new() |
Parallel processing, ~25-35% faster | Non-deterministic |
Reproducible | UMAP.new(random_seed: 42) |
Serial processing | Fully deterministic |
When to use each mode:
- Production/Analysis: Use default (no seed) for best performance when exact reproducibility isn't critical
- Research/Testing: Use a seed when you need reproducible results for comparisons or debugging
- CI/Testing: Always use a seed to ensure consistent test results
Note: The transform
method is always deterministic once a model is fitted, regardless of seed usage during training.
This error occurs when UMAP cannot find enough neighbors for some points. Solutions:
-
Reduce n_neighbors: Use a smaller value (e.g., 5 instead of 15)
umap = ClusterKit::Dimensionality::UMAP.new(n_neighbors: 5)
-
Add structure to your data: Completely random data may not work well
# Bad: Pure random data with no structure data = Array.new(100) { Array.new(50) { rand } } # Good: Data with clusters or patterns (see Quick Start example) # Create clusters with centers and add points around them
-
Ensure sufficient data points: UMAP needs at least n_neighbors + 1 points
-
Use consistent data generation: For examples/testing, use a fixed seed
srand(42) # Ensures reproducible data generation
Note: Real-world embeddings (from text, images, etc.) typically have inherent structure and work better than random data.
- Process in batches for datasets > 100k points
- Use PCA to reduce dimensions before UMAP
- Ensure Rust is installed:
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
- For M1/M2 Macs, ensure you have the latest Xcode command line tools
- Clear the build cache if needed:
bundle exec rake clean
After checking out the repo, run bin/setup
to install dependencies. Then, run rake spec
to run the tests.
To install this gem onto your local machine, run bundle exec rake install
.
# Run all tests
bundle exec rspec
# Run specific test file
bundle exec rspec spec/clusterkit/clustering_spec.rb
# Run with coverage
COVERAGE=true bundle exec rspec
Bug reports and pull requests are welcome on GitHub at https://github.com/scientist-labs/clusterkit.
The gem is available as open source under the terms of the MIT License.
If you use ClusterKit in your research, please cite:
@software{clusterkit,
author = {Chris Petersen},
title = {ClusterKit: High-Performance Clustering and Dimensionality Reduction for Ruby},
year = {2024},
url = {https://github.com/scientist-labs/clusterkit}
}
And please also cite the underlying libraries: