Skip to content

sbolanowski/h_wave_function

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

Quantum Visualization of the Hydrogen Atom

In this Jupyter notebook, fundamental aspects of the hydrogen atom are explored, specifically its wavefunction and the electron orbits associated with different quantum states. Using libraries such as Matplotlib, Seaborn, and SciPy, calculations and visualizations are performed to graphically represent both the probabilities of finding an electron in a specific region of space and the trajectories of its orbit at different energy levels.


The wavefunction equation of the hydrogen atom is:

$$ \psi_{n,l,m}(r, \theta, \varphi) = \sqrt{\left( \frac{2}{n b_r} \right)^3 \frac{(n - l - 1)!}{2n[(n + l)!]}} e^{-r/nb_r} \left( \frac{2r}{n b_r} \right)^l L_{n-l-1}^{2l+1} · Y_l^m (\theta, \varphi) $$

where:

$$ \begin{aligned} &{n, l, m} \quad \text{are the quantum numbers,} \\ & r, \ \theta, \ \varphi \quad \text{are the spherical coordinates,} \\ & b_r \quad \text{is the Bohr radius,} \\ & L_{n-l-1}^{2l+1} \quad \text{​is a Laguerre polynomial,} \\ & Y_l^m (\theta, \varphi) \quad \text{is a spherical harmonic function.} \end{aligned} $$


Banner



For more information, visit:

About

Quantum visualization of the hydrogen atom.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published