TinySpline is a small, yet powerful library for interpolating, transforming, and querying arbitrary NURBS, B-Splines, and Bézier curves. The library is implemented in ANSI C (C89) and provides a wrapper for C++ along with auto-generated bindings for C#, D, Go, Java, Lua, Octave, PHP, Python, R, and Ruby.
MIT License - see the LICENSE file in the source distribution.
Releases can be downloaded from the releases page.
In addition, the following package manager are supported:
Luarocks (Lua; currently only Linux and macOS):
luarocks install --server=https://msteinbeck.github.io/tinyspline/luarocks tinyspline
Maven (Java):
<dependency>
<groupId>org.tinyspline</groupId>
<artifactId>tinyspline</artifactId>
<version>0.3.0-2</version>
</dependency>
PyPI (Python):
python -m pip install tinyspline
See BUILD.md.
The following listing uses the ANSI C interface:
#include "tinyspline.h"
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char **argv)
{
tsStatus status; /**< Used for error handling. */
tsBSpline spline; /**< The spline to setup. */
tsReal *ctrlp; /**< Pointer to the control points of `spline`. */
tsBSpline beziers; /**< `spline` as a sequence of bezier curves. */
tsDeBoorNet net; /**< Used to evaluate `spline` and `beziers`. */
tsReal *result; /**< Pointer to the result of `net`. */
/* ------------------------------------------------------------------------- */
/* TinySpline includes a powerful, system-independent, and thread-safe error
* handling system. Embed your code into a TS_TRY/TS_END_TRY block and use
* TS_CALL when calling a TinySpline function. Likewise, you can use any of
* the TS_THROW macros to raise an error if an external function (e.g.,
* malloc) failed.
*
* Errors can be handled with TS_CATCH. TS_FINALLY contains code that is
* executed in any case, therefore being perfectly suitable for cleaning up
* resources. That said, error handling is entirely optional. You may omit
* TS_TRY/TS_END_TRY, TS_CALL, and TS_THROW and pass NULL instead of a pointer
* to a tsStatus object. */
spline = ts_bspline_init();
beziers = ts_bspline_init();
net = ts_deboornet_init();
ctrlp = result = NULL;
TS_TRY(try, status.code, &status)
/* Create a spline... */
TS_CALL(try, status.code, ts_bspline_new(
7, /* ... consisting of 7 control points... */
2, /* ... in 2D... */
3, /* ... of degree 3... */
TS_CLAMPED, /* ... using a clamped knot vector. */
&spline, &status))
/* Setup control points of `spline`. */
TS_CALL(try, status.code, ts_bspline_control_points(
&spline, &ctrlp, &status))
ctrlp[0] = -1.75f; /* x0 */
ctrlp[1] = -1.0f; /* y0 */
ctrlp[2] = -1.5f; /* x1 */
ctrlp[3] = -0.5f; /* y1 */
ctrlp[4] = -1.5f; /* x2 */
ctrlp[5] = 0.0f; /* y2 */
ctrlp[6] = -1.25f; /* x3 */
ctrlp[7] = 0.5f; /* y3 */
ctrlp[8] = -0.75f; /* x4 */
ctrlp[9] = 0.75f; /* y4 */
ctrlp[10] = 0.0f; /* x5 */
ctrlp[11] = 0.5f; /* y5 */
ctrlp[12] = 0.5f; /* x6 */
ctrlp[13] = 0.0f; /* y6 */
TS_CALL(try, status.code, ts_bspline_set_control_points(
&spline, ctrlp, &status))
/* Evaluate `spline` at u = 0.4. */
TS_CALL(try, status.code, ts_bspline_eval(
&spline, 0.4f, &net, &status))
TS_CALL(try, status.code, ts_deboornet_result(
&net, &result, &status))
printf("x = %f, y = %f\n", result[0], result[1]);
/* Derive `spline` ... */
TS_CALL(try, status.code, ts_bspline_derive(
&spline, 1, TS_CONTROL_POINT_EPSILON,
&beziers, &status))
/* ... and subdivide it into a sequence of Bezier curves. */
TS_CALL(try, status.code, ts_bspline_to_beziers(
&beziers, &beziers, &status))
ts_deboornet_free(&net);
free(result);
/* Evaluate `beziers` at u = 0.3. */
TS_CALL(try, status.code, ts_bspline_eval(
&beziers, 0.3f, &net, &status))
TS_CALL(try, status.code, ts_deboornet_result(
&net, &result, &status))
printf("x = %f, y = %f\n", result[0], result[1]);
TS_CATCH(status.code)
puts(status.message);
TS_FINALLY
ts_bspline_free(&spline);
ts_bspline_free(&beziers);
ts_deboornet_free(&net);
if (ctrlp)
free(ctrlp);
if (result)
free(result);
TS_END_TRY
return status.code? 1 : 0;
}
The same example using the C++ interface:
#include <iostream>
#include "tinysplinecpp.h"
int main(int argc, char **argv)
{
// Create a cubic spline with 7 control points in 2D using
// a clamped knot vector. This call is equivalent to:
// tinyspline::BSpline spline(7, 2, 3, TS_CLAMPED);
tinyspline::BSpline spline(7);
// Setup control points.
std::vector<tinyspline::real> ctrlp = spline.controlPoints();
ctrlp[0] = -1.75; // x0
ctrlp[1] = -1.0; // y0
ctrlp[2] = -1.5; // x1
ctrlp[3] = -0.5; // y1
ctrlp[4] = -1.5; // x2
ctrlp[5] = 0.0; // y2
ctrlp[6] = -1.25; // x3
ctrlp[7] = 0.5; // y3
ctrlp[8] = -0.75; // x4
ctrlp[9] = 0.75; // y4
ctrlp[10] = 0.0; // x5
ctrlp[11] = 0.5; // y5
ctrlp[12] = 0.5; // x6
ctrlp[13] = 0.0; // y6
spline.setControlPoints(ctrlp);
// Evaluate `spline` at u = 0.4 using 'eval'.
std::vector<tinyspline::real> result = spline.eval(0.4).result();
std::cout << "x = " << result[0] << ", y = " << result[1] << std::endl;
// Derive `spline` and subdivide it into a sequence of Bezier curves.
tinyspline::BSpline beziers = spline.derive().toBeziers();
// Evaluate `beziers` at u = 0.3 using '()' instead of 'eval'.
result = beziers(0.3).result();
std::cout << "x = " << result[0] << ", y = " << result[1] << std::endl;
return 0;
}
[1] is a very good starting point for B-Splines.
[2] explains De Boor's Algorithm and gives some pseudo code.
[3] provides a good overview of NURBS with some mathematical background.
[4] is useful if you want to use NURBS in TinySpline.