Open
Description
This works
sage: R.<x> = ZZ[]
sage: sqrt(1+x+O(x^5))
1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + O(x^5)
One would expect this to work:
sage: R.<x> = ZZ[[]]
sage: exp(x+O(x^5))
Traceback (most recent call last):
File "<ipython console>", line 1, in <module>
File "/Users/robert/sage/current/local/lib/python2.5/site-packages/sage/calculus/calculus.py", line 8415, in __call__
return x.exp()
File "power_series_ring_element.pyx", line 1383, in sage.rings.power_series_ring_element.PowerSeries.exp (sage/rings/power_series_ring_element.c:9850)
File "power_series_ring_element.pyx", line 1305, in sage.rings.power_series_ring_element.PowerSeries.solve_linear_de (sage/rings/power_series_ring_element.c:9707)
File "power_series_ring_element.pyx", line 1648, in sage.rings.power_series_ring_element._solve_linear_de (sage/rings/power_series_ring_element.c:11103)
File "power_series_ring_element.pyx", line 1650, in sage.rings.power_series_ring_element._solve_linear_de (sage/rings/power_series_ring_element.c:11124)
File "/Users/robert/sage/sage-3.1.3/local/lib/python2.5/site-packages/sage/rings/polynomial/polynomial_ring.py", line 252, in __call__
return C(self, x, check, is_gen, construct=construct)
File "polynomial_integer_dense_flint.pyx", line 224, in sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint.__init__ (sage/rings/polynomial/polynomial_integer_dense_flint.cpp:4981)
File "parent.pyx", line 293, in sage.structure.parent.Parent.__call__ (sage/structure/parent.c:3828)
File "parent.pyx", line 284, in sage.structure.parent.__call__ (sage/structure/parent.c:3712)
File "rational.pyx", line 2288, in sage.rings.rational.Q_to_Z._call_ (sage/rings/rational.c:14682)
TypeError: no conversion of this rational to integer
Component: basic arithmetic
Issue created by migration from https://trac.sagemath.org/ticket/4748