Open
Description
On 8.1.rc0. Consider :
sage: import sympy
sage: [arcsin(t) for t in [0, 1/2, sqrt(2)/2, sqrt(3)/2, 1]]
[0, 1/6*pi, arcsin(1/2*sqrt(2)), arcsin(1/2*sqrt(3)), 1/2*pi]
sage: [maxima.asin(t).sage() for t in [0, 1/2, sqrt(2)/2, sqrt(3)/2, 1]]
[0, 1/6*pi, 1/4*pi, 1/3*pi, 1/2*pi]
sage: [sympy.asin(t)._sage_() for t in [0, 1/2, sqrt(2)/2, sqrt(3)/2, 1]]
[0, 1/6*pi, 1/4*pi, 1/3*pi, 1/2*pi]
sage: [arctan(t) for t in [0, 1/sqrt(3), 1, sqrt(3)]]
[0, arctan(1/3*sqrt(3)), 1/4*pi, arctan(sqrt(3))]
sage: [maxima.atan(t).sage() for t in [0, 1/sqrt(3), 1, sqrt(3)]]
[0, 1/6*pi, 1/4*pi, 1/3*pi]
sage: [sympy.atan(t)._sage_() for t in [0, 1/sqrt(3), 1, sqrt(3)]]
[0, 1/6*pi, 1/4*pi, 1/3*pi]
[ Edit on 2017-11-23 ] In the same vein :
sage: [arccos(t) for t in [0, 1/2, sqrt(2)/2, sqrt(3)/2, 1]]
[1/2*pi, 1/3*pi, arccos(1/2*sqrt(2)), arccos(1/2*sqrt(3)), 0]
sage: [maxima.arccos(t).sage() for t in [0, 1/2, sqrt(2)/2, sqrt(3)/2, 1]]
[1/2*pi, 1/3*pi, arccos(1/2*sqrt(2)), arccos(1/2*sqrt(3)), 0]
sage: [sympy.acos(t)._sage_() for t in [0, 1/2, sqrt(2)/2, sqrt(3)/2, 1]]
[1/2*pi, 1/3*pi, 1/4*pi, 1/6*pi, 0]
sage: [arctan(t) for t in [0, 1/sqrt(3), 1, sqrt(3)]]
[0, arctan(1/3*sqrt(3)), 1/4*pi, arctan(sqrt(3))]
sage: [maxima.arctan(t).sage() for t in [0, 1/sqrt(3), 1, sqrt(3)]]
[0, arctan(1/3*sqrt(3)), 1/4*pi, arctan(sqrt(3))]
sage: [sympy.atan(t)._sage_() for t in [0, 1/sqrt(3), 1, sqrt(3)]]
[0, 1/6*pi, 1/4*pi, 1/3*pi]
This is not a bug stricto sensu (the answers are not false), but is certainly a lack of functionality.
The absence of this problem when using sympy
or maxima
fingerpoints to pynac
.
Furthermore, arctan suffers from some lack of simplification:
sage: assume(-pi/2<x, x<pi/2)
sage: arctan(tan(x)).simplify() # OK
x
sage: arctan(sin(x)/cos(x)).simplify() # should return x as above
arctan(sin(x)/cos(x))
sage: arctan(sin(x)/cos(x)).simplify_full()
arctan(sin(x)/cos(x))
arctan2 has the same issue:
sage: arctan2(sin(x), cos(x)).simplify_full()
arctan2(sin(x), cos(x))
In those cases, the problem is not solved by recourse to pynac
...
Depends on #24262
Component: symbolics
Issue created by migration from https://trac.sagemath.org/ticket/24211