Closed
Description
From ask.sagemath.org:
sage: n = var('n')
sage: sum(1/((2*n+1)^2-4)^2, n, 0, oo)
1/64*pi^2 - 1/12
sage: sum(1/((2*n+1)^2-4)^2, n, 0, oo, algorithm='maxima')
1/64*pi^2 - 1/12
but correct answer is 1/64*pi^2
. SymPy (with #22004) and Mathematica do it right:
sage: sum(1/((2*n+1)^2-4)^2, n, 0, oo, algorithm='mathematica')
1/64*pi^2
sage: sum(1/((2*n+1)^2-4)^2, n, 0, oo, algorithm='sympy')
1/64*pi^2
I am using version:
$ sage -standard | grep maxima
maxima..................................5.35.1.p2 (5.35.1.p2)
See #18920 for the ticket updating maxima version.
Depends on #18920
Upstream: Fixed upstream, in a later stable release.
Component: symbolics
Keywords: maxima
Issue created by migration from https://trac.sagemath.org/ticket/22005