Open
Description
From this sage-support thread:
sage: assume(x, 'real')
sage: limit((x^(1/x)-1)*sqrt(x), x=infinity)
+Infinity
sage: limit(((1/x)^x-1)/sqrt(x), x=0, dir='+')
+Infinity
Thanks. In pure Maxima we get:
(%i3) limit((x^(1/x)-1)*sqrt(x),x,inf);
(%o3) inf
(%i4) limit((x^(1/x)-1)*sqrt(x),x,0);
(%o4) und
(%i5) limit((x^(1/x)-1)*sqrt(x),x,0,plus);
(%o5) 0
(%i6) limit((x^(1/x)-1)*sqrt(x),x,0,minus);
(%o6) inf
From what I understand, the first of these is wrong, maybe also the last (should it be infinity (complex infinity) instead?).
Interestingly,
(%i7) domain:complex;
(%o7) complex
(%i10) limit((x^(1/x)-1)*sqrt(x),x,0,minus);
;;;
;;; Detected access to protected memory, also kwown as 'bus or segmentation fault'.
;;; Jumping to the outermost toplevel prompt
<lots of times>
Segmentation fault: 11
Upstream: Not yet reported upstream; Will do shortly.
Component: calculus
Keywords: limit
Issue created by migration from https://trac.sagemath.org/ticket/20452