Skip to content

solve with sqrt seems less than powerful #14215

Open
@kcrisman

Description

@kcrisman
sage:  eq = x == sqrt(x)
sage: solve(eq,x)
[x == sqrt(x)]
sage: solve(eq,x,to_poly_solve=True)
[x == 0, x == 1]
sage:  eq = x^2 == sqrt(x)
sage: solve(eq,x,to_poly_solve=True)
[x == x^(1/4), x == 0]
sage:  eq = x^2 == -sqrt(x)
sage: solve(eq,x,to_poly_solve=True)
[x == sqrt(-sqrt(x)), x == 1/2*I*sqrt(3) - 1/2, x == 0, x == -1/2*I*sqrt(3) - 1/2]
sage:  eq = a*x**2 == -sqrt(x)
sage: solve(eq,x,to_poly_solve=True)
[x == -sqrt(-sqrt(x)/a), x == sqrt(-sqrt(x)/a)]

This is a simplification of an example a user posted on the Sage Facebook page.

Component: symbolics

Issue created by migration from https://trac.sagemath.org/ticket/14215

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions