-
Notifications
You must be signed in to change notification settings - Fork 87
Description
Summary
Create a native hook service for agentic-flow that provides intelligent agent routing, swarm-distributed processing, and continuous self-learning. This builds upon RuVector's hook capabilities (v0.1.48) while leveraging agentic-flow's advanced infrastructure for 50-100x performance improvement and runtime optimization.
Motivation
The current RuVector hooks system provides:
- Pre/post tool hooks with Q-learning patterns
- Git co-edit analysis
- Vector memory for context
- Agent routing recommendations
However, it has limitations:
- Latency: 500-2000ms per hook (process spawn overhead)
- Learning: Static Q-table (no continuous improvement)
- Scale: Single-process analysis
- Storage: Flat JSON file (not queryable)
Agentic-flow has infrastructure that can dramatically improve this:
- QuicCoordinator for swarm orchestration
- ReasoningBank with Judge/Distill/Retrieve/Consolidate algorithms
- LearningSystem with 9 RL algorithms
- AgentDB with causal memory graphs
- Native MCP server integration
Proposed Architecture
```
┌─────────────────────────────────────────────────────────────────────┐
│ AGENTIC-FLOW HOOK SERVICE │
├─────────────────────────────────────────────────────────────────────┤
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ MCP Interface Layer │ │
│ │ PreHook │ PostHook │ Route │ Metrics │ Explain │ Transfer │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Adaptive Swarm Coordinator │ │
│ │ ┌──────────┐ ┌──────────────┐ ┌────────────────────────┐ │ │
│ │ │ Topology │ │ Token Budget │ │ Graceful Degradation │ │ │
│ │ │ Selector │ │ Optimizer │ │ Handler │ │ │
│ │ └──────────┘ └──────────────┘ └────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Intelligence Core │ │
│ │ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌──────────┐ │ │
│ │ │ Reasoning │ │ Learning │ │ Reflexion │ │ Causal │ │ │
│ │ │ Bank │ │ System │ │ Memory │ │ Graph │ │ │
│ │ │ (Patterns) │ │ (9 RL) │ │ (Errors) │ │(Co-edits)│ │ │
│ │ └────────────┘ └────────────┘ └────────────┘ └──────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Learning Protection │ │
│ │ ┌────────────┐ ┌────────────┐ ┌────────────────────────┐ │ │
│ │ │ EWC Memory │ │ Incremental│ │ Transfer Learning │ │ │
│ │ │ Protection │ │ Pretrain │ │ (Cross-Project) │ │ │
│ │ └────────────┘ └────────────┘ └────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Observability Layer │ │
│ │ ┌────────────┐ ┌────────────┐ ┌────────────────────────┐ │ │
│ │ │ Metrics │ │ Explain- │ │ A/B Testing │ │ │
│ │ │ Dashboard │ │ ability │ │ Framework │ │ │
│ │ └────────────┘ └────────────┘ └────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
```
Implementation Plan
Phase 1: Native MCP Hook Tools (P0)
Goal: 50-100x latency reduction
- Create
agentic-flow/src/hooks/module - Implement native MCP tools:
hook_pre_edit- Pre-edit context retrieval and agent routinghook_post_edit- Outcome tracking and learning updatehook_pre_command- Command risk assessmenthook_post_command- Command outcome learninghook_route- Intelligent agent selection
- Integrate with existing ReasoningBank retrieve/distill
- Add graceful degradation (4-level fallback)
Latency target: 5-50ms (vs 500-2000ms current)
Phase 2: Error Pattern Learning (P0)
Goal: Learn from failures, not just successes
- Integrate ReflexionMemory for error tracking
- Implement error pattern schema:
```typescript
interface ErrorPattern {
errorType: string;
context: string;
resolution: string;
filePatterns: string[];
agentSuccess: Record<string, number>;
}
``` - Auto-extract error patterns from failed tool calls
- Route to agents with best error-fix track record
Phase 3: Swarm-Distributed Pretrain (P1)
Goal: 4-8x faster analysis
- Create
SwarmPretrainclass using QuicCoordinator - Spawn specialized analysis agents in parallel:
code-analyzer- File structure analysisresearcher- Git history analysisanalyst- Pattern detectionoptimizer- Embedding computation
- Store results in ReasoningBank (not JSON)
- Implement incremental pretrain (changed files only)
Phase 4: Intelligent Routing with SONA (P1)
Goal: Continuous learning, not static patterns
- Integrate SONA orchestrator for agent selection
- Connect to LearningSystem with configurable RL algorithm:
- Q-Learning (default, simple)
- Actor-Critic (balanced)
- PPO (complex tasks)
- Decision Transformer (sequential tasks)
- Implement feedback loop:
```
Route → Execute → Judge → Update Policy → Route (improved)
``` - Add exploration/exploitation balance
Phase 5: Causal Co-Edit Graph (P1)
Goal: Transitive relationship discovery
- Migrate co-edit patterns to CausalMemoryGraph
- Enable transitive queries ("files 2 hops away")
- Add causal intervention queries ("what if I change X?")
- Integrate with pre-edit hook for file suggestions
Phase 6: Observability & Metrics (P1)
Goal: Visibility into learning effectiveness
- Create metrics collection system:
```typescript
interface LearningMetrics {
routingAccuracy: number;
learningVelocity: number;
patternUtilization: number;
agentPerformance: Record<string, AgentMetrics>;
}
``` - Add MCP tools:
learning_dashboard,learning_health - Implement A/B testing framework for algorithm comparison
Phase 7: Dynamic Agent Factory (P2)
Goal: Runtime agent creation, not static YAML
- Create
AgentFactoryclass - Generate agents from pretrain data + learned patterns
- Adaptive system prompts from successful interactions
- Swarm-coordinated agent pool management
Phase 8: Explainability (P2)
Goal: Transparent routing decisions
- Implement
RoutingExplanationinterface - Add
hook_explainMCP tool - Show contributing factors with weights
- List alternatives with "why not" reasons
Phase 9: Token Optimization (P2)
Goal: Cost-aware agent selection
- Track token usage per agent
- Add token budget parameter to routing
- Score agents by effectiveness AND efficiency
- Implement cost-sensitive mode
Phase 10: Transfer Learning (P2)
Goal: Cross-project knowledge sharing
- Implement pattern transfer between projects
- Adapt patterns to target project stack
- Seed new projects with high-confidence patterns
- Support federated learning across user projects
Phase 11: Memory Protection (P3)
Goal: Prevent catastrophic forgetting
- Implement EWC (Elastic Weight Consolidation)
- Compute pattern importance weights
- Penalize updates that damage important patterns
- Add memory versioning for rollback
Phase 12: Cold Start Optimization (P3)
Goal: Smart bootstrap for new projects
- Detect project stack automatically
- Load pre-trained domain patterns
- Find and transfer from similar projects
- Quick pretrain for project-specific patterns
Performance Targets
| Metric | Current (RuVector) | Target (Agentic-Flow) | Improvement |
|---|---|---|---|
| Hook latency | 500-2000ms | 5-50ms | 50-100x |
| Pretrain time | 30-60s | 5-15s | 4-8x |
| Pattern storage | JSON file | ReasoningBank | Queryable |
| Learning | Static | Continuous | Runtime |
| Agent routing | Pattern match | SONA + 9 RL | Adaptive |
| Co-edit queries | O(n) scan | Graph traversal | O(log n) |
Files to Create/Modify
New Files
agentic-flow/src/hooks/index.ts- Hook service entry pointagentic-flow/src/hooks/HookOrchestrator.ts- Central coordinatoragentic-flow/src/hooks/SwarmPretrain.ts- Distributed analysisagentic-flow/src/hooks/IntelligentRouter.ts- SONA-based routingagentic-flow/src/hooks/AgentFactory.ts- Dynamic agent generationagentic-flow/src/hooks/ErrorLearner.ts- Error pattern extractionagentic-flow/src/hooks/TransferLearner.ts- Cross-project learningagentic-flow/src/mcp/fastmcp/tools/hooks/*.ts- MCP tool definitions
Modified Files
agentic-flow/src/mcp/fastmcp/index.ts- Register hook toolsagentic-flow/src/reasoningbank/index.ts- Add hook-specific methodspackages/agentdb/src/controllers/LearningSystem.ts- Hook integration
Integration with RuVector
The hook service should be usable standalone OR as a drop-in replacement for RuVector hooks:
```json
// .claude/settings.json - RuVector mode (current)
{
"hooks": {
"PreToolUse": [{
"matcher": "Edit|Write",
"hooks": [{
"type": "command",
"command": "npx ruvector hooks pre-edit "$TOOL_INPUT_file_path""
}]
}]
}
}
// .claude/settings.json - Agentic-Flow mode (new)
{
"hooks": {
"PreToolUse": [{
"matcher": "Edit|Write",
"hooks": [{
"type": "mcp",
"server": "agentic-flow",
"tool": "hook_pre_edit",
"args": { "file": "$TOOL_INPUT_file_path" }
}]
}]
}
}
```
Success Criteria
- Latency: Pre-edit hook completes in <50ms (p95)
- Learning: Routing accuracy improves >10% over 100 interactions
- Errors: Error patterns reduce repeat failures by >20%
- Pretrain: Full repo analysis in <15s for 10k files
- Stability: Graceful degradation maintains functionality during partial failures
Related
- RuVector v0.1.48:
hooks build-agents,hooks pretrain - ReasoningBank: Judge/Distill/Retrieve/Consolidate algorithms
- LearningSystem: 9 RL algorithms
- QuicCoordinator: Swarm orchestration
- AgentDB: CausalMemoryGraph, ReflexionMemory
/cc @ruvnet