Skip to content

feat: Agentic-Flow Intelligent Hook Service with Swarm Orchestration & Self-Learning #85

@ruvnet

Description

@ruvnet

Summary

Create a native hook service for agentic-flow that provides intelligent agent routing, swarm-distributed processing, and continuous self-learning. This builds upon RuVector's hook capabilities (v0.1.48) while leveraging agentic-flow's advanced infrastructure for 50-100x performance improvement and runtime optimization.

Motivation

The current RuVector hooks system provides:

  • Pre/post tool hooks with Q-learning patterns
  • Git co-edit analysis
  • Vector memory for context
  • Agent routing recommendations

However, it has limitations:

  • Latency: 500-2000ms per hook (process spawn overhead)
  • Learning: Static Q-table (no continuous improvement)
  • Scale: Single-process analysis
  • Storage: Flat JSON file (not queryable)

Agentic-flow has infrastructure that can dramatically improve this:

  • QuicCoordinator for swarm orchestration
  • ReasoningBank with Judge/Distill/Retrieve/Consolidate algorithms
  • LearningSystem with 9 RL algorithms
  • AgentDB with causal memory graphs
  • Native MCP server integration

Proposed Architecture

```
┌─────────────────────────────────────────────────────────────────────┐
│ AGENTIC-FLOW HOOK SERVICE │
├─────────────────────────────────────────────────────────────────────┤
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ MCP Interface Layer │ │
│ │ PreHook │ PostHook │ Route │ Metrics │ Explain │ Transfer │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Adaptive Swarm Coordinator │ │
│ │ ┌──────────┐ ┌──────────────┐ ┌────────────────────────┐ │ │
│ │ │ Topology │ │ Token Budget │ │ Graceful Degradation │ │ │
│ │ │ Selector │ │ Optimizer │ │ Handler │ │ │
│ │ └──────────┘ └──────────────┘ └────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Intelligence Core │ │
│ │ ┌────────────┐ ┌────────────┐ ┌────────────┐ ┌──────────┐ │ │
│ │ │ Reasoning │ │ Learning │ │ Reflexion │ │ Causal │ │ │
│ │ │ Bank │ │ System │ │ Memory │ │ Graph │ │ │
│ │ │ (Patterns) │ │ (9 RL) │ │ (Errors) │ │(Co-edits)│ │ │
│ │ └────────────┘ └────────────┘ └────────────┘ └──────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Learning Protection │ │
│ │ ┌────────────┐ ┌────────────┐ ┌────────────────────────┐ │ │
│ │ │ EWC Memory │ │ Incremental│ │ Transfer Learning │ │ │
│ │ │ Protection │ │ Pretrain │ │ (Cross-Project) │ │ │
│ │ └────────────┘ └────────────┘ └────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────▼─────────────────────────────────┐ │
│ │ Observability Layer │ │
│ │ ┌────────────┐ ┌────────────┐ ┌────────────────────────┐ │ │
│ │ │ Metrics │ │ Explain- │ │ A/B Testing │ │ │
│ │ │ Dashboard │ │ ability │ │ Framework │ │ │
│ │ └────────────┘ └────────────┘ └────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
```

Implementation Plan

Phase 1: Native MCP Hook Tools (P0)

Goal: 50-100x latency reduction

  • Create agentic-flow/src/hooks/ module
  • Implement native MCP tools:
    • hook_pre_edit - Pre-edit context retrieval and agent routing
    • hook_post_edit - Outcome tracking and learning update
    • hook_pre_command - Command risk assessment
    • hook_post_command - Command outcome learning
    • hook_route - Intelligent agent selection
  • Integrate with existing ReasoningBank retrieve/distill
  • Add graceful degradation (4-level fallback)

Latency target: 5-50ms (vs 500-2000ms current)

Phase 2: Error Pattern Learning (P0)

Goal: Learn from failures, not just successes

  • Integrate ReflexionMemory for error tracking
  • Implement error pattern schema:
    ```typescript
    interface ErrorPattern {
    errorType: string;
    context: string;
    resolution: string;
    filePatterns: string[];
    agentSuccess: Record<string, number>;
    }
    ```
  • Auto-extract error patterns from failed tool calls
  • Route to agents with best error-fix track record

Phase 3: Swarm-Distributed Pretrain (P1)

Goal: 4-8x faster analysis

  • Create SwarmPretrain class using QuicCoordinator
  • Spawn specialized analysis agents in parallel:
    • code-analyzer - File structure analysis
    • researcher - Git history analysis
    • analyst - Pattern detection
    • optimizer - Embedding computation
  • Store results in ReasoningBank (not JSON)
  • Implement incremental pretrain (changed files only)

Phase 4: Intelligent Routing with SONA (P1)

Goal: Continuous learning, not static patterns

  • Integrate SONA orchestrator for agent selection
  • Connect to LearningSystem with configurable RL algorithm:
    • Q-Learning (default, simple)
    • Actor-Critic (balanced)
    • PPO (complex tasks)
    • Decision Transformer (sequential tasks)
  • Implement feedback loop:
    ```
    Route → Execute → Judge → Update Policy → Route (improved)
    ```
  • Add exploration/exploitation balance

Phase 5: Causal Co-Edit Graph (P1)

Goal: Transitive relationship discovery

  • Migrate co-edit patterns to CausalMemoryGraph
  • Enable transitive queries ("files 2 hops away")
  • Add causal intervention queries ("what if I change X?")
  • Integrate with pre-edit hook for file suggestions

Phase 6: Observability & Metrics (P1)

Goal: Visibility into learning effectiveness

  • Create metrics collection system:
    ```typescript
    interface LearningMetrics {
    routingAccuracy: number;
    learningVelocity: number;
    patternUtilization: number;
    agentPerformance: Record<string, AgentMetrics>;
    }
    ```
  • Add MCP tools: learning_dashboard, learning_health
  • Implement A/B testing framework for algorithm comparison

Phase 7: Dynamic Agent Factory (P2)

Goal: Runtime agent creation, not static YAML

  • Create AgentFactory class
  • Generate agents from pretrain data + learned patterns
  • Adaptive system prompts from successful interactions
  • Swarm-coordinated agent pool management

Phase 8: Explainability (P2)

Goal: Transparent routing decisions

  • Implement RoutingExplanation interface
  • Add hook_explain MCP tool
  • Show contributing factors with weights
  • List alternatives with "why not" reasons

Phase 9: Token Optimization (P2)

Goal: Cost-aware agent selection

  • Track token usage per agent
  • Add token budget parameter to routing
  • Score agents by effectiveness AND efficiency
  • Implement cost-sensitive mode

Phase 10: Transfer Learning (P2)

Goal: Cross-project knowledge sharing

  • Implement pattern transfer between projects
  • Adapt patterns to target project stack
  • Seed new projects with high-confidence patterns
  • Support federated learning across user projects

Phase 11: Memory Protection (P3)

Goal: Prevent catastrophic forgetting

  • Implement EWC (Elastic Weight Consolidation)
  • Compute pattern importance weights
  • Penalize updates that damage important patterns
  • Add memory versioning for rollback

Phase 12: Cold Start Optimization (P3)

Goal: Smart bootstrap for new projects

  • Detect project stack automatically
  • Load pre-trained domain patterns
  • Find and transfer from similar projects
  • Quick pretrain for project-specific patterns

Performance Targets

Metric Current (RuVector) Target (Agentic-Flow) Improvement
Hook latency 500-2000ms 5-50ms 50-100x
Pretrain time 30-60s 5-15s 4-8x
Pattern storage JSON file ReasoningBank Queryable
Learning Static Continuous Runtime
Agent routing Pattern match SONA + 9 RL Adaptive
Co-edit queries O(n) scan Graph traversal O(log n)

Files to Create/Modify

New Files

  • agentic-flow/src/hooks/index.ts - Hook service entry point
  • agentic-flow/src/hooks/HookOrchestrator.ts - Central coordinator
  • agentic-flow/src/hooks/SwarmPretrain.ts - Distributed analysis
  • agentic-flow/src/hooks/IntelligentRouter.ts - SONA-based routing
  • agentic-flow/src/hooks/AgentFactory.ts - Dynamic agent generation
  • agentic-flow/src/hooks/ErrorLearner.ts - Error pattern extraction
  • agentic-flow/src/hooks/TransferLearner.ts - Cross-project learning
  • agentic-flow/src/mcp/fastmcp/tools/hooks/*.ts - MCP tool definitions

Modified Files

  • agentic-flow/src/mcp/fastmcp/index.ts - Register hook tools
  • agentic-flow/src/reasoningbank/index.ts - Add hook-specific methods
  • packages/agentdb/src/controllers/LearningSystem.ts - Hook integration

Integration with RuVector

The hook service should be usable standalone OR as a drop-in replacement for RuVector hooks:

```json
// .claude/settings.json - RuVector mode (current)
{
"hooks": {
"PreToolUse": [{
"matcher": "Edit|Write",
"hooks": [{
"type": "command",
"command": "npx ruvector hooks pre-edit "$TOOL_INPUT_file_path""
}]
}]
}
}

// .claude/settings.json - Agentic-Flow mode (new)
{
"hooks": {
"PreToolUse": [{
"matcher": "Edit|Write",
"hooks": [{
"type": "mcp",
"server": "agentic-flow",
"tool": "hook_pre_edit",
"args": { "file": "$TOOL_INPUT_file_path" }
}]
}]
}
}
```

Success Criteria

  1. Latency: Pre-edit hook completes in <50ms (p95)
  2. Learning: Routing accuracy improves >10% over 100 interactions
  3. Errors: Error patterns reduce repeat failures by >20%
  4. Pretrain: Full repo analysis in <15s for 10k files
  5. Stability: Graceful degradation maintains functionality during partial failures

Related

  • RuVector v0.1.48: hooks build-agents, hooks pretrain
  • ReasoningBank: Judge/Distill/Retrieve/Consolidate algorithms
  • LearningSystem: 9 RL algorithms
  • QuicCoordinator: Swarm orchestration
  • AgentDB: CausalMemoryGraph, ReflexionMemory

/cc @ruvnet

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions