Skip to content

[Enhancement] Integrate RuVector Ecosystem - Orchestration Layer (6 packages) #84

@ruvnet

Description

@ruvnet

GitHub Issue: Agentic-Flow RuVector Ecosystem Integration

Title: [Enhancement] Integrate RuVector Ecosystem - Orchestration Layer (6 packages)

Labels: enhancement, ruvector, orchestration, v2.0.1-alpha.8

Milestone: v2.0.1-alpha.8 - RuVector Orchestration

Assignees: Core development team

Related Issues:

  • agentdb RuVector Integration (companion issue)
  • #[TBD] Phase 1 PostgreSQL Backend
  • #[TBD] ReasoningBank Enhancement

📋 Summary

Integrate 6 RuVector orchestration packages + built-in hooks CLI into agentic-flow@2.0.1-alpha.8 to transform the platform from prototype to enterprise-grade, self-learning AI orchestration system.

Target Version: v2.0.1-alpha.8
Estimated Timeline: 2.5 weeks (12 working days)
Complexity: High
Priority: Critical

Expected Impact

Metric Before After Improvement
Agent routing latency 500ms <10ms 50x faster
Routing accuracy 70% 90% +29%
System uptime 95% 99.9% +5.2%
Task planning quality Baseline +40% Multi-step reasoning
Training data 0 examples 1000+
Pattern detection None Real-time Neuromorphic AI

📦 Packages to Integrate

⭐⭐⭐ TIER S+: Transformational

1. @ruvector/ruvllm@0.2.3 - Self-Learning LLM Orchestration

  • TRM (Tiny Recursive Models) - Multi-step reasoning
  • SONA (Self-Optimizing Neural Architecture) - Adaptive learning
  • FastGRNN routing - Hardware-accelerated agent selection
  • HNSW memory - Vector-backed context retrieval

2. @ruvector/tiny-dancer@0.1.15 - Production Neural Router

  • Circuit breaker pattern - 99.9% uptime
  • Uncertainty estimation - Confidence scores
  • Hot-reload capability - Zero-downtime updates
  • Fallback chains - Graceful degradation

3. @ruvector/agentic-synth@0.1.6 - Synthetic Data Generation (DevDependency)

  • DSPy.ts integration - Prompt optimization
  • Multi-LLM support - Gemini, OpenRouter, Claude
  • RAG dataset generation - Training data for ReasoningBank
  • Edge case generation - Comprehensive test coverage

⭐⭐ TIER 1: Critical

4. @ruvector/router@0.1.25 - Semantic Agent Routing

  • HNSW intent matching - Vector-based routing
  • 66 agent support - All agentic-flow agents
  • Sub-10ms latency - Real-time routing

5. @ruvector/rudag@0.1.0 - DAG Task Scheduler

  • Critical path analysis - Task prioritization
  • Bottleneck detection - Performance optimization
  • ML-based attention - Intelligent scheduling

⭐ TIER 2: High Priority

6. spiking-neural@1.0.1 - Neuromorphic Pattern Detection

  • LIF neurons - Biological learning
  • STDP learning - Spike-timing plasticity
  • 10-100x lower energy - Edge deployment ready
  • Temporal pattern recognition - Workflow analysis

🔧 Implementation Details

Phase 1: Core Orchestration (Days 1-3)

1.1 RuvLLM Integration

File: agentic-flow/src/orchestration/RuvLLMOrchestrator.ts

import { RuvLLM } from '@ruvector/ruvllm';
import type { AgentTask, AgentResult } from '../types/Agent.js';
import { ReasoningBank } from '../memory/ReasoningBank.js';

export interface RuvLLMConfig {
  model: string;
  temperature?: number;
  maxTokens?: number;
  reasoningDepth?: number; // TRM depth (1-5)
  learningRate?: number;   // SONA learning rate
  memoryEnabled?: boolean; // HNSW context retrieval
}

export class RuvLLMOrchestrator {
  private ruvllm: RuvLLM;
  private reasoningBank: ReasoningBank;
  private config: RuvLLMConfig;

  constructor(config: RuvLLMConfig) {
    this.config = {
      temperature: 0.7,
      maxTokens: 4096,
      reasoningDepth: 3,
      learningRate: 0.01,
      memoryEnabled: true,
      ...config
    };

    this.ruvllm = new RuvLLM({
      model: this.config.model,

      // TRM configuration (recursive reasoning)
      trm: {
        enabled: true,
        depth: this.config.reasoningDepth,
        beamWidth: 3,
        pruningThreshold: 0.3
      },

      // SONA configuration (adaptive learning)
      sona: {
        enabled: true,
        learningRate: this.config.learningRate,
        architecture: 'fastgrnn',
        adaptationInterval: 100, // Update every 100 inferences
        metricWeights: {
          accuracy: 0.5,
          latency: 0.3,
          tokenEfficiency: 0.2
        }
      },

      // FastGRNN routing configuration
      routing: {
        type: 'fastgrnn',
        hiddenSize: 128,
        uncertainty: true, // Enable uncertainty estimation
        fallback: 'random' // Fallback strategy
      },

      // HNSW memory configuration
      memory: this.config.memoryEnabled ? {
        type: 'hnsw',
        dimension: 384,
        maxConnections: 16,
        efConstruction: 200,
        efSearch: 100
      } : undefined
    });
  }

  /**
   * Orchestrate agent task with recursive reasoning and adaptive learning
   */
  async orchestrate(task: AgentTask): Promise<AgentResult> {
    const startTime = Date.now();

    try {
      // Retrieve similar patterns from ReasoningBank (if memory enabled)
      let context: string[] = [];
      if (this.config.memoryEnabled && this.reasoningBank) {
        const similarPatterns = await this.reasoningBank.search(task.description, 5);
        context = similarPatterns.map(p =>
          `Previous success: ${p.task}${p.output} (reward: ${p.reward})`
        );
      }

      // Execute with TRM (multi-step reasoning)
      const result = await this.ruvllm.complete({
        prompt: task.description,
        context: context.join('\n'),

        // TRM will break this into sub-problems
        reasoning: {
          steps: this.config.reasoningDepth,
          critique: true // Self-critique at each step
        },

        temperature: this.config.temperature,
        maxTokens: this.config.maxTokens
      });

      const latencyMs = Date.now() - startTime;

      // Store reasoning trajectory in ReasoningBank
      if (this.reasoningBank) {
        await this.reasoningBank.store({
          sessionId: task.sessionId,
          task: task.description,
          input: task.input,
          output: result.text,

          // TRM reasoning chain
          reasoning: result.reasoning?.steps || [],
          critique: result.reasoning?.critique,

          // Performance metrics
          latencyMs,
          tokensUsed: result.usage.totalTokens,

          // Outcome (to be updated later)
          success: true,
          reward: 0.0 // Will be updated by feedback
        });
      }

      return {
        taskId: task.id,
        output: result.text,
        reasoning: result.reasoning,
        confidence: result.uncertainty?.confidence || 1.0,
        metadata: {
          latencyMs,
          tokensUsed: result.usage.totalTokens,
          reasoningDepth: result.reasoning?.steps?.length || 0,
          modelVersion: result.model
        }
      };

    } catch (error) {
      console.error('RuvLLM orchestration failed:', error);
      throw error;
    }
  }

  /**
   * Provide feedback to SONA for adaptive learning
   */
  async feedback(taskId: string, reward: number): Promise<void> {
    await this.ruvllm.learn({
      taskId,
      reward,
      updateWeights: true
    });

    // Update ReasoningBank pattern
    if (this.reasoningBank) {
      await this.reasoningBank.updateReward(taskId, reward);
    }
  }

  /**
   * Get routing recommendations with uncertainty
   */
  async routeAgent(task: string, agents: string[]): Promise<{
    agent: string;
    confidence: number;
    alternatives: Array<{ agent: string; score: number }>;
  }> {
    const result = await this.ruvllm.route({
      task,
      options: agents,
      returnUncertainty: true,
      topK: 3
    });

    return {
      agent: result.selected,
      confidence: result.confidence,
      alternatives: result.alternatives.map((alt, idx) => ({
        agent: alt,
        score: result.scores[idx]
      }))
    };
  }

  /**
   * Get current SONA performance metrics
   */
  async getMetrics(): Promise<{
    accuracy: number;
    avgLatency: number;
    tokenEfficiency: number;
    adaptationCount: number;
  }> {
    return await this.ruvllm.getSONAMetrics();
  }
}

Usage Example:

// agentic-flow/src/agents/AgentExecutor.ts
import { RuvLLMOrchestrator } from '../orchestration/RuvLLMOrchestrator.js';

const orchestrator = new RuvLLMOrchestrator({
  model: 'claude-sonnet-4-5-20250929',
  reasoningDepth: 3,     // 3-step recursive reasoning
  learningRate: 0.01,    // SONA adaptation rate
  memoryEnabled: true    // HNSW context retrieval
});

// Execute complex task with multi-step reasoning
const result = await orchestrator.orchestrate({
  id: 'task-123',
  sessionId: 'session-abc',
  description: 'Design a scalable microservices architecture for e-commerce',
  input: { requirements: '...' }
});

console.log('Result:', result.output);
console.log('Reasoning steps:', result.reasoning.steps);
console.log('Confidence:', result.confidence);

// Provide feedback for adaptive learning
await orchestrator.feedback('task-123', 0.95); // 95% success

// Get routing recommendations
const routing = await orchestrator.routeAgent(
  'Implement user authentication',
  ['backend-dev', 'security-engineer', 'api-architect']
);

console.log('Recommended agent:', routing.agent);
console.log('Confidence:', routing.confidence);
console.log('Alternatives:', routing.alternatives);

1.2 Circuit Breaker Routing

File: agentic-flow/src/routing/CircuitBreakerRouter.ts

import { TinyDancer } from '@ruvector/tiny-dancer';
import type { AgentRoute, RouteResult } from '../types/Router.js';

export interface CircuitBreakerConfig {
  failureThreshold: number;    // Failures before opening (default: 5)
  resetTimeout: number;         // ms before attempting reset (default: 30000)
  monitoringWindow: number;     // ms to track failures (default: 60000)
  fallbackEnabled: boolean;     // Enable fallback chain
  hotReload: boolean;           // Enable hot-reload
}

export class CircuitBreakerRouter {
  private router: TinyDancer;
  private config: CircuitBreakerConfig;
  private metrics: Map<string, {
    failures: number;
    successes: number;
    lastFailure: number;
    state: 'closed' | 'open' | 'half-open';
  }>;

  constructor(config: Partial<CircuitBreakerConfig> = {}) {
    this.config = {
      failureThreshold: 5,
      resetTimeout: 30000,
      monitoringWindow: 60000,
      fallbackEnabled: true,
      hotReload: true,
      ...config
    };

    this.router = new TinyDancer({
      // FastGRNN neural routing
      routing: {
        type: 'fastgrnn',
        hiddenSize: 128,
        learningRate: 0.01
      },

      // Circuit breaker configuration
      circuitBreaker: {
        enabled: true,
        failureThreshold: this.config.failureThreshold,
        resetTimeout: this.config.resetTimeout,
        monitoringWindow: this.config.monitoringWindow
      },

      // Uncertainty estimation
      uncertainty: {
        enabled: true,
        method: 'dropout', // Monte Carlo dropout
        samples: 10
      },

      // Fallback chain
      fallback: this.config.fallbackEnabled ? {
        enabled: true,
        strategy: 'confidence', // Fallback to next highest confidence
        maxAttempts: 3
      } : undefined,

      // Hot-reload capability
      hotReload: this.config.hotReload
    });

    this.metrics = new Map();
  }

  /**
   * Route task to agent with circuit breaker protection
   */
  async route(task: string, agents: string[]): Promise<RouteResult> {
    // Filter out agents with open circuits
    const availableAgents = agents.filter(agent => {
      const state = this.getCircuitState(agent);
      return state !== 'open';
    });

    if (availableAgents.length === 0) {
      throw new Error('All agents have open circuits - system degraded');
    }

    try {
      // Neural routing with uncertainty
      const result = await this.router.route({
        task,
        agents: availableAgents,
        returnUncertainty: true,
        topK: this.config.fallbackEnabled ? 3 : 1
      });

      // Record success
      this.recordSuccess(result.selected);

      return {
        agent: result.selected,
        confidence: result.confidence,
        uncertainty: result.uncertainty,
        fallbacks: result.alternatives || [],
        circuitState: this.getCircuitState(result.selected)
      };

    } catch (error) {
      console.error('Routing failed:', error);

      // Record failure
      if (availableAgents.length > 0) {
        this.recordFailure(availableAgents[0]);
      }

      throw error;
    }
  }

  /**
   * Execute task with circuit breaker and fallback
   */
  async executeWithFallback<T>(
    task: string,
    agents: string[],
    executor: (agent: string) => Promise<T>
  ): Promise<T> {
    const routing = await this.route(task, agents);

    // Try primary agent
    try {
      const result = await this.executeWithCircuitBreaker(
        routing.agent,
        () => executor(routing.agent)
      );
      return result;

    } catch (primaryError) {
      console.warn(`Primary agent ${routing.agent} failed:`, primaryError);

      // Try fallbacks
      if (this.config.fallbackEnabled && routing.fallbacks.length > 0) {
        for (const fallback of routing.fallbacks) {
          const circuitState = this.getCircuitState(fallback);

          if (circuitState === 'open') {
            console.warn(`Fallback ${fallback} circuit is open, skipping`);
            continue;
          }

          try {
            console.log(`Attempting fallback: ${fallback}`);
            const result = await this.executeWithCircuitBreaker(
              fallback,
              () => executor(fallback)
            );
            return result;

          } catch (fallbackError) {
            console.warn(`Fallback ${fallback} failed:`, fallbackError);
            continue;
          }
        }
      }

      throw new Error(`All agents failed including fallbacks`);
    }
  }

  /**
   * Execute with circuit breaker protection
   */
  private async executeWithCircuitBreaker<T>(
    agent: string,
    executor: () => Promise<T>
  ): Promise<T> {
    const state = this.getCircuitState(agent);

    if (state === 'open') {
      const metrics = this.metrics.get(agent)!;
      const timeSinceLastFailure = Date.now() - metrics.lastFailure;

      if (timeSinceLastFailure >= this.config.resetTimeout) {
        // Attempt reset (half-open state)
        metrics.state = 'half-open';
        console.log(`Circuit for ${agent} entering half-open state`);
      } else {
        throw new Error(`Circuit breaker open for ${agent}`);
      }
    }

    try {
      const result = await executor();
      this.recordSuccess(agent);
      return result;

    } catch (error) {
      this.recordFailure(agent);
      throw error;
    }
  }

  /**
   * Record successful execution
   */
  private recordSuccess(agent: string): void {
    const metrics = this.metrics.get(agent) || {
      failures: 0,
      successes: 0,
      lastFailure: 0,
      state: 'closed'
    };

    metrics.successes++;

    // Reset circuit if in half-open state
    if (metrics.state === 'half-open') {
      metrics.state = 'closed';
      metrics.failures = 0;
      console.log(`Circuit for ${agent} reset to closed`);
    }

    this.metrics.set(agent, metrics);
  }

  /**
   * Record failed execution
   */
  private recordFailure(agent: string): void {
    const metrics = this.metrics.get(agent) || {
      failures: 0,
      successes: 0,
      lastFailure: 0,
      state: 'closed'
    };

    metrics.failures++;
    metrics.lastFailure = Date.now();

    // Open circuit if threshold exceeded
    if (metrics.failures >= this.config.failureThreshold) {
      metrics.state = 'open';
      console.warn(`Circuit breaker opened for ${agent} (${metrics.failures} failures)`);
    }

    this.metrics.set(agent, metrics);
  }

  /**
   * Get circuit state for agent
   */
  getCircuitState(agent: string): 'closed' | 'open' | 'half-open' {
    return this.metrics.get(agent)?.state || 'closed';
  }

  /**
   * Get metrics for all agents
   */
  getMetrics(): Record<string, {
    failures: number;
    successes: number;
    uptime: number;
    state: string;
  }> {
    const result: Record<string, any> = {};

    for (const [agent, metrics] of this.metrics.entries()) {
      const total = metrics.failures + metrics.successes;
      result[agent] = {
        failures: metrics.failures,
        successes: metrics.successes,
        uptime: total > 0 ? (metrics.successes / total) * 100 : 100,
        state: metrics.state
      };
    }

    return result;
  }

  /**
   * Hot-reload routing model without downtime
   */
  async updateModel(modelPath: string): Promise<void> {
    if (!this.config.hotReload) {
      throw new Error('Hot-reload is disabled');
    }

    await this.router.loadModel(modelPath);
    console.log('Routing model updated successfully');
  }

  /**
   * Reset circuit for specific agent
   */
  resetCircuit(agent: string): void {
    const metrics = this.metrics.get(agent);
    if (metrics) {
      metrics.state = 'closed';
      metrics.failures = 0;
      console.log(`Circuit for ${agent} manually reset`);
    }
  }

  /**
   * Reset all circuits
   */
  resetAllCircuits(): void {
    for (const [agent, metrics] of this.metrics.entries()) {
      metrics.state = 'closed';
      metrics.failures = 0;
    }
    console.log('All circuits reset');
  }
}

Usage Example:

// agentic-flow/src/agents/SwarmExecutor.ts
import { CircuitBreakerRouter } from '../routing/CircuitBreakerRouter.js';

const router = new CircuitBreakerRouter({
  failureThreshold: 5,     // Open after 5 failures
  resetTimeout: 30000,     // Try reset after 30s
  fallbackEnabled: true,   // Enable fallback chain
  hotReload: true          // Enable hot-reload
});

// Execute task with circuit breaker protection
const result = await router.executeWithFallback(
  'Implement REST API',
  ['backend-dev', 'api-architect', 'coder'],
  async (agent: string) => {
    // Execute agent task
    return await executeAgent(agent, task);
  }
);

// Check circuit states
const metrics = router.getMetrics();
console.log('Agent uptime:', metrics);

// Hot-reload updated routing model
await router.updateModel('./models/router-v2.onnx');

Phase 2: Intelligent Routing (Days 4-6)

2.1 Semantic Agent Router

File: agentic-flow/src/routing/SemanticRouter.ts

import { SemanticRouter as RuvectorRouter } from '@ruvector/router';
import type { Agent, RoutingResult } from '../types/Agent.js';

export interface SemanticRouterConfig {
  dimension: number;         // Embedding dimension (384 for sentence-transformers)
  threshold: number;         // Minimum similarity threshold (0-1)
  topK: number;             // Return top K agents
  cacheEnabled: boolean;    // Cache routing decisions
  learningEnabled: boolean; // Learn from feedback
}

export class SemanticRouter {
  private router: RuvectorRouter;
  private config: SemanticRouterConfig;
  private agentRegistry: Map<string, Agent>;

  constructor(config: Partial<SemanticRouterConfig> = {}) {
    this.config = {
      dimension: 384,
      threshold: 0.3,
      topK: 3,
      cacheEnabled: true,
      learningEnabled: true,
      ...config
    };

    this.router = new RuvectorRouter({
      // HNSW index configuration
      index: {
        type: 'hnsw',
        dimension: this.config.dimension,
        metric: 'cosine',
        maxConnections: 16,
        efConstruction: 200,
        efSearch: 100
      },

      // Intent matching configuration
      matching: {
        threshold: this.config.threshold,
        topK: this.config.topK,
        fuzzy: true // Enable fuzzy matching
      },

      // Cache configuration
      cache: this.config.cacheEnabled ? {
        enabled: true,
        maxSize: 1000,
        ttl: 3600000 // 1 hour
      } : undefined,

      // Learning configuration
      learning: this.config.learningEnabled ? {
        enabled: true,
        updateOnFeedback: true
      } : undefined
    });

    this.agentRegistry = new Map();
  }

  /**
   * Register agents with their capabilities
   */
  async registerAgents(agents: Agent[]): Promise<void> {
    for (const agent of agents) {
      // Store in registry
      this.agentRegistry.set(agent.name, agent);

      // Add to semantic router
      await this.router.addRoute({
        id: agent.name,
        name: agent.displayName || agent.name,

        // Agent capabilities as searchable text
        description: agent.description,
        keywords: agent.keywords || [],
        examples: agent.examples || [],

        // Metadata
        metadata: {
          category: agent.category,
          priority: agent.priority || 'medium',
          capabilities: agent.capabilities || []
        }
      });
    }

    console.log(`Registered ${agents.length} agents in semantic router`);
  }

  /**
   * Route task to best-matching agents
   */
  async route(task: string): Promise<RoutingResult> {
    const startTime = Date.now();

    // Search for matching agents
    const matches = await this.router.search({
      query: task,
      topK: this.config.topK,
      threshold: this.config.threshold
    });

    const latencyMs = Date.now() - startTime;

    if (matches.length === 0) {
      throw new Error(`No agents found matching task: ${task}`);
    }

    return {
      primary: {
        agent: matches[0].id,
        similarity: matches[0].score,
        metadata: matches[0].metadata
      },
      alternatives: matches.slice(1).map(m => ({
        agent: m.id,
        similarity: m.score,
        metadata: m.metadata
      })),
      latencyMs,
      cached: matches[0].cached || false
    };
  }

  /**
   * Provide feedback to improve routing
   */
  async feedback(taskId: string, agent: string, success: boolean): Promise<void> {
    if (!this.config.learningEnabled) {
      return;
    }

    await this.router.learn({
      taskId,
      routeId: agent,
      reward: success ? 1.0 : 0.0
    });
  }

  /**
   * Get routing statistics
   */
  async getStats(): Promise<{
    totalAgents: number;
    totalRoutes: number;
    cacheHitRate: number;
    avgLatency: number;
  }> {
    return await this.router.getStats();
  }

  /**
   * Clear routing cache
   */
  clearCache(): void {
    this.router.clearCache();
  }
}

Integration with Agent Registry:

// agentic-flow/src/registry/AgentRegistry.ts (ENHANCED)
import { SemanticRouter } from '../routing/SemanticRouter.js';

export class AgentRegistry {
  private router: SemanticRouter;

  async initialize(): Promise<void> {
    // Load all 66 agents
    const agents = await this.loadAgents();

    // Register with semantic router
    this.router = new SemanticRouter({
      dimension: 384,
      threshold: 0.3,
      topK: 3,
      learningEnabled: true
    });

    await this.router.registerAgents(agents);
  }

  async routeTask(task: string): Promise<string> {
    const result = await this.router.route(task);
    return result.primary.agent;
  }
}

2.2 DAG Task Scheduler

File: agentic-flow/src/scheduling/DAGScheduler.ts

import { DAGScheduler as RuDAG } from '@ruvector/rudag';
import type { Task, TaskDependency, ScheduleResult } from '../types/Scheduler.js';

export interface DAGSchedulerConfig {
  maxParallelism: number;     // Max parallel tasks
  prioritization: 'critical-path' | 'attention' | 'hybrid';
  bottleneckDetection: boolean;
  dynamicReordering: boolean;
}

export class DAGScheduler {
  private scheduler: RuDAG;
  private config: DAGSchedulerConfig;

  constructor(config: Partial<DAGSchedulerConfig> = {}) {
    this.config = {
      maxParallelism: 10,
      prioritization: 'hybrid',
      bottleneckDetection: true,
      dynamicReordering: true,
      ...config
    };

    this.scheduler = new RuDAG({
      // Parallelism configuration
      parallelism: {
        max: this.config.maxParallelism,
        adaptive: true // Adjust based on resource availability
      },

      // Prioritization strategy
      prioritization: {
        method: this.config.prioritization,

        // Critical path analysis
        criticalPath: {
          enabled: true,
          considerLatency: true
        },

        // ML attention-based prioritization
        attention: this.config.prioritization !== 'critical-path' ? {
          enabled: true,
          model: 'transformer',
          hiddenSize: 128
        } : undefined
      },

      // Bottleneck detection
      bottleneck: this.config.bottleneckDetection ? {
        enabled: true,
        threshold: 0.8, // Alert if task blocks >80% of graph
        autoOptimize: true
      } : undefined,

      // Dynamic reordering
      reordering: this.config.dynamicReordering ? {
        enabled: true,
        interval: 1000, // Re-optimize every 1s
        costThreshold: 0.2 // Reorder if >20% improvement
      } : undefined
    });
  }

  /**
   * Schedule tasks with dependency resolution
   */
  async schedule(tasks: Task[], dependencies: TaskDependency[]): Promise<ScheduleResult> {
    const startTime = Date.now();

    // Build DAG
    const dag = await this.scheduler.build({
      nodes: tasks.map(t => ({
        id: t.id,
        name: t.name,
        estimatedDuration: t.estimatedDuration || 1000,
        priority: t.priority || 'medium',
        metadata: t.metadata
      })),

      edges: dependencies.map(d => ({
        from: d.from,
        to: d.to,
        type: d.type || 'requires'
      }))
    });

    // Analyze critical path
    const criticalPath = await this.scheduler.findCriticalPath(dag);

    // Detect bottlenecks
    const bottlenecks = this.config.bottleneckDetection
      ? await this.scheduler.detectBottlenecks(dag)
      : [];

    // Generate execution plan
    const plan = await this.scheduler.optimize(dag);

    const latencyMs = Date.now() - startTime;

    return {
      plan: {
        stages: plan.stages.map(stage => ({
          id: stage.id,
          tasks: stage.taskIds,
          parallelism: stage.parallelism
        })),
        estimatedDuration: plan.estimatedDuration,
        parallelismUtilization: plan.parallelismUtilization
      },

      analysis: {
        criticalPath: {
          tasks: criticalPath.taskIds,
          duration: criticalPath.totalDuration
        },
        bottlenecks: bottlenecks.map(b => ({
          taskId: b.taskId,
          blockingPercentage: b.blockingPercentage,
          recommendation: b.recommendation
        }))
      },

      latencyMs
    };
  }

  /**
   * Execute DAG with dynamic monitoring
   */
  async execute<T>(
    schedule: ScheduleResult,
    executor: (taskId: string) => Promise<T>
  ): Promise<Map<string, T>> {
    const results = new Map<string, T>();

    for (const stage of schedule.plan.stages) {
      // Execute stage tasks in parallel
      const stagePromises = stage.tasks.map(async (taskId) => {
        const result = await executor(taskId);
        results.set(taskId, result);

        // Report progress for dynamic reordering
        if (this.config.dynamicReordering) {
          await this.scheduler.reportProgress(taskId, 'completed');
        }
      });

      await Promise.all(stagePromises);
    }

    return results;
  }

  /**
   * Get scheduling metrics
   */
  async getMetrics(): Promise<{
    avgSchedulingTime: number;
    avgParallelism: number;
    bottleneckRate: number;
    reorderingCount: number;
  }> {
    return await this.scheduler.getMetrics();
  }
}

Usage Example:

// agentic-flow/src/workflows/WorkflowExecutor.ts
import { DAGScheduler } from '../scheduling/DAGScheduler.js';

const scheduler = new DAGScheduler({
  maxParallelism: 10,
  prioritization: 'hybrid',
  bottleneckDetection: true,
  dynamicReordering: true
});

// Define workflow tasks
const tasks = [
  { id: '1', name: 'Fetch data', estimatedDuration: 2000 },
  { id: '2', name: 'Process data', estimatedDuration: 5000 },
  { id: '3', name: 'Generate report', estimatedDuration: 3000 },
  { id: '4', name: 'Send notification', estimatedDuration: 1000 }
];

// Define dependencies
const dependencies = [
  { from: '1', to: '2' },  // Process depends on fetch
  { from: '2', to: '3' },  // Report depends on process
  { from: '3', to: '4' }   // Notification depends on report
];

// Schedule
const schedule = await scheduler.schedule(tasks, dependencies);

console.log('Critical path:', schedule.analysis.criticalPath);
console.log('Bottlenecks:', schedule.analysis.bottlenecks);
console.log('Execution plan:', schedule.plan.stages);

// Execute
const results = await scheduler.execute(schedule, async (taskId) => {
  return await executeTask(taskId);
});

Phase 3: Advanced Features (Days 7-10)

3.1 Neuromorphic Pattern Detection

File: agentic-flow/src/analysis/NeuromorphicDetector.ts

import { SpikingNeuralNetwork } from 'spiking-neural';
import type { WorkflowEvent, Pattern } from '../types/Analysis.js';

export interface NeuromorphicConfig {
  inputSize: number;        // Number of input neurons
  hiddenSize: number;       // Hidden layer neurons
  outputSize: number;       // Output neurons (pattern types)
  threshold: number;        // LIF threshold voltage
  leakRate: number;         // Membrane leak rate
  stdpEnabled: boolean;     // STDP learning
  windowSize: number;       // Temporal window (ms)
}

export class NeuromorphicDetector {
  private snn: SpikingNeuralNetwork;
  private config: NeuromorphicConfig;
  private eventBuffer: WorkflowEvent[];

  constructor(config: Partial<NeuromorphicConfig> = {}) {
    this.config = {
      inputSize: 64,
      hiddenSize: 128,
      outputSize: 16,  // 16 pattern types
      threshold: 1.0,
      leakRate: 0.9,
      stdpEnabled: true,
      windowSize: 1000,
      ...config
    };

    this.snn = new SpikingNeuralNetwork({
      // Network architecture
      layers: [
        {
          type: 'input',
          size: this.config.inputSize,
          neuronType: 'poisson' // Poisson spike encoding
        },
        {
          type: 'hidden',
          size: this.config.hiddenSize,
          neuronType: 'lif', // Leaky Integrate-and-Fire
          threshold: this.config.threshold,
          leak: this.config.leakRate
        },
        {
          type: 'output',
          size: this.config.outputSize,
          neuronType: 'lif',
          threshold: this.config.threshold,
          leak: this.config.leakRate
        }
      ],

      // STDP learning configuration
      learning: this.config.stdpEnabled ? {
        rule: 'stdp',
        tauPlus: 20.0,   // Pre-before-post window
        tauMinus: 20.0,  // Post-before-pre window
        aPlus: 0.01,     // LTP magnitude
        aMinus: 0.01,    // LTD magnitude
        wMax: 1.0        // Max weight
      } : undefined,

      // SIMD acceleration
      simd: true,

      // Temporal coding
      temporal: {
        enabled: true,
        windowMs: this.config.windowSize
      }
    });

    this.eventBuffer = [];
  }

  /**
   * Encode workflow event as spike train
   */
  private encodeEvent(event: WorkflowEvent): Float32Array {
    const encoding = new Float32Array(this.config.inputSize);

    // Encode event type (first 16 neurons)
    const typeIndex = this.getEventTypeIndex(event.type);
    encoding[typeIndex] = 1.0;

    // Encode timing (next 16 neurons) - temporal pattern
    const timingBin = Math.floor((event.timestamp % this.config.windowSize) / (this.config.windowSize / 16));
    encoding[16 + timingBin] = 1.0;

    // Encode agent (next 16 neurons)
    const agentHash = this.hashString(event.agent) % 16;
    encoding[32 + agentHash] = 1.0;

    // Encode magnitude (last 16 neurons) - rate coding
    const magnitude = Math.min(event.magnitude || 1.0, 1.0);
    for (let i = 0; i < 16; i++) {
      if (Math.random() < magnitude) {
        encoding[48 + i] = 1.0;
      }
    }

    return encoding;
  }

  /**
   * Process workflow event and detect patterns
   */
  async processEvent(event: WorkflowEvent): Promise<Pattern[]> {
    // Add to buffer
    this.eventBuffer.push(event);

    // Keep only events within temporal window
    const cutoff = Date.now() - this.config.windowSize;
    this.eventBuffer = this.eventBuffer.filter(e => e.timestamp >= cutoff);

    // Encode event as spike train
    const spikes = this.encodeEvent(event);

    // Forward pass through SNN
    const output = await this.snn.forward(spikes);

    // Decode patterns from output spikes
    const patterns: Pattern[] = [];
    for (let i = 0; i < this.config.outputSize; i++) {
      if (output[i] > 0.5) {  // Threshold for pattern detection
        patterns.push({
          type: this.getPatternType(i),
          confidence: output[i],
          timestamp: event.timestamp,
          events: this.eventBuffer.slice(-5)  // Last 5 events
        });
      }
    }

    return patterns;
  }

  /**
   * Train on labeled workflow sequences
   */
  async train(sequences: Array<{
    events: WorkflowEvent[];
    pattern: string;
  }>): Promise<void> {
    for (const sequence of sequences) {
      const target = new Float32Array(this.config.outputSize);
      const patternIndex = this.getPatternTypeIndex(sequence.pattern);
      target[patternIndex] = 1.0;

      // Encode sequence as temporal spike train
      for (const event of sequence.events) {
        const spikes = this.encodeEvent(event);
        await this.snn.forward(spikes);
      }

      // STDP learning (automatic if enabled)
      if (this.config.stdpEnabled) {
        await this.snn.backward(target);
      }
    }
  }

  /**
   * Get detected pattern types
   */
  private getPatternType(index: number): string {
    const patterns = [
      'sequential-success',
      'parallel-bottleneck',
      'retry-loop',
      'cascading-failure',
      'hot-path',
      'cold-start',
      'load-spike',
      'gradual-degradation',
      'recovery-pattern',
      'circular-dependency',
      'race-condition',
      'resource-contention',
      'temporal-clustering',
      'periodic-burst',
      'anomaly',
      'normal'
    ];
    return patterns[index] || 'unknown';
  }

  private getPatternTypeIndex(pattern: string): number {
    const patterns = [
      'sequential-success', 'parallel-bottleneck', 'retry-loop',
      'cascading-failure', 'hot-path', 'cold-start', 'load-spike',
      'gradual-degradation', 'recovery-pattern', 'circular-dependency',
      'race-condition', 'resource-contention', 'temporal-clustering',
      'periodic-burst', 'anomaly', 'normal'
    ];
    return patterns.indexOf(pattern);
  }

  private getEventTypeIndex(type: string): number {
    const types = [
      'task-start', 'task-end', 'task-fail', 'agent-spawn',
      'agent-exit', 'memory-store', 'memory-retrieve', 'route-change',
      'circuit-open', 'circuit-close', 'swarm-init', 'swarm-complete',
      'error', 'warning', 'info', 'debug'
    ];
    return types.indexOf(type) % 16;
  }

  private hashString(str: string): number {
    let hash = 0;
    for (let i = 0; i < str.length; i++) {
      hash = ((hash << 5) - hash) + str.charCodeAt(i);
      hash |= 0;
    }
    return Math.abs(hash);
  }

  /**
   * Get energy consumption (10-100x lower than traditional)
   */
  getEnergyMetrics(): {
    totalSpikes: number;
    avgSpikeRate: number;
    estimatedEnergyMicrojoules: number;
  } {
    return this.snn.getEnergyMetrics();
  }
}

Usage Example:

// agentic-flow/src/monitoring/WorkflowMonitor.ts
import { NeuromorphicDetector } from '../analysis/NeuromorphicDetector.js';

const detector = new NeuromorphicDetector({
  inputSize: 64,
  hiddenSize: 128,
  outputSize: 16,
  stdpEnabled: true,
  windowSize: 1000
});

// Train on historical patterns
await detector.train([
  {
    events: [/* sequential success events */],
    pattern: 'sequential-success'
  },
  {
    events: [/* bottleneck events */],
    pattern: 'parallel-bottleneck'
  }
]);

// Real-time pattern detection
workflow.on('event', async (event) => {
  const patterns = await detector.processEvent(event);

  for (const pattern of patterns) {
    if (pattern.type === 'cascading-failure') {
      console.warn('Cascading failure detected!', pattern);
      await circuitBreaker.openAll();
    } else if (pattern.type === 'parallel-bottleneck') {
      console.log('Bottleneck detected, reordering DAG');
      await dagScheduler.reoptimize();
    }
  }
});

// Monitor energy efficiency
const energy = detector.getEnergyMetrics();
console.log('Energy consumption:', energy.estimatedEnergyMicrojoules, 'μJ');
console.log('Spike rate:', energy.avgSpikeRate, 'Hz');

3.2 Synthetic Data Generation (DevDependency)

File: agentic-flow/scripts/generate-training-data.ts

import { AgenticSynth } from '@ruvector/agentic-synth';
import { ReasoningBank } from '../src/memory/ReasoningBank.js';

export interface SynthConfig {
  provider: 'gemini' | 'openrouter' | 'anthropic';
  model: string;
  numExamples: number;
  domains: string[];
}

export class TrainingDataGenerator {
  private synth: AgenticSynth;
  private reasoningBank: ReasoningBank;

  constructor(config: SynthConfig) {
    this.synth = new AgenticSynth({
      provider: config.provider,
      model: config.model,

      // DSPy.ts configuration (prompt optimization)
      dspy: {
        enabled: true,
        optimization: 'mipro', // Multi-Iteration Prompt Optimization
        metricName: 'exact_match',
        maxIterations: 50
      }
    });
  }

  /**
   * Generate RAG training patterns for ReasoningBank
   */
  async generateReasoningPatterns(numExamples: number = 1000): Promise<void> {
    console.log(`Generating ${numExamples} reasoning patterns...`);

    const patterns = await this.synth.generateRAG({
      numExamples,

      // Task types
      tasks: [
        'code-generation',
        'debugging',
        'architecture-design',
        'test-generation',
        'refactoring',
        'documentation',
        'optimization',
        'security-analysis'
      ],

      // Difficulty levels
      difficulty: ['easy', 'medium', 'hard', 'expert'],

      // Output format
      schema: {
        task: 'string',
        input: 'string',
        reasoning: 'array[string]',
        output: 'string',
        success: 'boolean',
        reward: 'number (0-1)'
      }
    });

    // Store in ReasoningBank
    for (const pattern of patterns) {
      await this.reasoningBank.store({
        sessionId: `synthetic-${Date.now()}`,
        task: pattern.task,
        input: pattern.input,
        reasoning: pattern.reasoning,
        output: pattern.output,
        success: pattern.success,
        reward: pattern.reward,
        latencyMs: 0,
        tokensUsed: 0
      });
    }

    console.log(`Stored ${patterns.length} patterns in ReasoningBank`);
  }

  /**
   * Generate edge case test scenarios
   */
  async generateEdgeCases(feature: string, numExamples: number = 100): Promise<any[]> {
    return await this.synth.generateEdgeCases({
      feature,
      numExamples,
      categories: [
        'null-inputs',
        'boundary-values',
        'type-mismatches',
        'race-conditions',
        'resource-exhaustion',
        'malformed-data',
        'concurrent-access',
        'timeout-scenarios'
      ]
    });
  }

  /**
   * Generate agentic workflow datasets
   */
  async generateWorkflows(numExamples: number = 500): Promise<void> {
    const workflows = await this.synth.generateWorkflows({
      numExamples,

      // Workflow patterns
      patterns: [
        'sequential',
        'parallel',
        'hierarchical',
        'mesh',
        'pipeline',
        'fan-out-fan-in'
      ],

      // Agent types (66 available)
      agents: [
        'coder', 'reviewer', 'tester', 'planner',
        'backend-dev', 'mobile-dev', 'ml-developer',
        'cicd-engineer', 'api-docs', 'system-architect'
      ],

      // Complexity levels
      complexity: {
        minAgents: 2,
        maxAgents: 10,
        minSteps: 3,
        maxSteps: 20
      }
    });

    console.log(`Generated ${workflows.length} workflow scenarios`);
    return workflows;
  }

  /**
   * Generate time-series event streams
   */
  async generateEventStreams(numStreams: number = 100): Promise<void> {
    const streams = await this.synth.generateTimeSeries({
      numStreams,
      duration: 3600000, // 1 hour per stream

      // Event types
      events: [
        'task-start',
        'task-end',
        'task-fail',
        'agent-spawn',
        'agent-exit',
        'memory-store',
        'circuit-open',
        'circuit-close'
      ],

      // Temporal patterns
      patterns: [
        'periodic',
        'bursty',
        'gradual-increase',
        'spike-and-recovery',
        'cascading-failure'
      ]
    });

    console.log(`Generated ${streams.length} event streams`);
    return streams;
  }
}

Usage Script:

# scripts/bootstrap-training-data.sh
#!/bin/bash

# Generate 1000 reasoning patterns
npx tsx scripts/generate-training-data.ts --type reasoning --count 1000

# Generate 500 workflow scenarios
npx tsx scripts/generate-training-data.ts --type workflows --count 500

# Generate 200 edge cases per feature
npx tsx scripts/generate-training-data.ts --type edge-cases --feature routing --count 200
npx tsx scripts/generate-training-data.ts --type edge-cases --feature circuit-breaker --count 200

# Generate 100 event streams
npx tsx scripts/generate-training-data.ts --type events --count 100

echo "✅ Training data generation complete"

Phase 4: Intelligence Hooks Integration (Days 11-12)

4.1 RuVector Hooks System

Overview: The ruvector package includes a built-in hooks CLI with 18 intelligent commands for self-learning workflow automation. This provides the intelligence layer that makes agentic-flow truly adaptive.

File: agentic-flow/src/hooks/RuvectorHooks.ts

import { spawn } from 'child_process';
import type { AgentTask, AgentResult } from '../types/Agent.js';

export interface HooksConfig {
  enabled: boolean;
  sessionTracking: boolean;
  memoryEnabled: boolean;
  routingEnabled: boolean;
}

export class RuvectorHooks {
  private config: HooksConfig;
  private sessionId: string | null = null;

  constructor(config: Partial<HooksConfig> = {}) {
    this.config = {
      enabled: true,
      sessionTracking: true,
      memoryEnabled: true,
      routingEnabled: true,
      ...config
    };
  }

  /**
   * Initialize hooks in the project
   */
  async initialize(): Promise<void> {
    if (!this.config.enabled) return;

    await this.runHook('init', []);
    console.log('✅ RuVector hooks initialized');
  }

  /**
   * Start a new session
   */
  async sessionStart(sessionId: string, metadata?: Record<string, any>): Promise<void> {
    if (!this.config.sessionTracking) return;

    this.sessionId = sessionId;

    const args = ['--session-id', sessionId];
    if (metadata) {
      args.push('--metadata', JSON.stringify(metadata));
    }

    await this.runHook('session-start', args);
    console.log(`🚀 Session started: ${sessionId}`);
  }

  /**
   * End current session and export metrics
   */
  async sessionEnd(exportMetrics: boolean = true): Promise<void> {
    if (!this.config.sessionTracking || !this.sessionId) return;

    const args = exportMetrics ? ['--export-metrics'] : [];
    await this.runHook('session-end', args);

    console.log(`✅ Session ended: ${this.sessionId}`);
    this.sessionId = null;
  }

  /**
   * Pre-edit intelligence hook
   */
  async preEdit(filePath: string): Promise<void> {
    if (!this.config.enabled) return;

    await this.runHook('pre-edit', [filePath]);
  }

  /**
   * Post-edit learning hook
   */
  async postEdit(filePath: string, changes?: string): Promise<void> {
    if (!this.config.enabled) return;

    const args = [filePath];
    if (changes) {
      args.push('--changes', changes);
    }

    await this.runHook('post-edit', args);
  }

  /**
   * Route task to optimal agent using hooks intelligence
   */
  async routeTask(task: string, context?: {
    file?: string;
    crate?: string;
  }): Promise<string> {
    if (!this.config.routingEnabled) {
      return 'coder'; // Default fallback
    }

    const args = [task];
    if (context?.file) {
      args.push('--file', context.file);
    }
    if (context?.crate) {
      args.push('--crate', context.crate);
    }

    const result = await this.runHook('route', args);

    // Parse agent recommendation from output
    const match = result.match(/Recommended agent: (\S+)/);
    return match?.[1] || 'coder';
  }

  /**
   * Get swarm recommendations for task type
   */
  async swarmRecommend(taskType: string): Promise<string[]> {
    if (!this.config.enabled) return [];

    const result = await this.runHook('swarm-recommend', [taskType]);

    // Parse agent recommendations from output
    const matches = result.matchAll(/- (\S+)/g);
    return Array.from(matches).map(m => m[1]);
  }

  /**
   * Store important context in vector memory
   */
  async remember(content: string, namespace?: string): Promise<void> {
    if (!this.config.memoryEnabled) return;

    const args = [content];
    if (namespace) {
      args.push('--namespace', namespace);
    }

    await this.runHook('remember', args);
  }

  /**
   * Recall context from vector memory
   */
  async recall(query: string, limit: number = 5): Promise<string[]> {
    if (!this.config.memoryEnabled) return [];

    const result = await this.runHook('recall', [
      query,
      '--limit', limit.toString()
    ]);

    // Parse recalled memories from output
    const lines = result.split('\n').filter(line => line.trim());
    return lines;
  }

  /**
   * Suggest relevant context for current task
   */
  async suggestContext(): Promise<string> {
    if (!this.config.enabled) return '';

    return await this.runHook('suggest-context', []);
  }

  /**
   * Get intelligence statistics
   */
  async getStats(): Promise<{
    sessionsTracked: number;
    editsLearned: number;
    routingAccuracy: number;
    memorySize: number;
  }> {
    if (!this.config.enabled) {
      return {
        sessionsTracked: 0,
        editsLearned: 0,
        routingAccuracy: 0,
        memorySize: 0
      };
    }

    const result = await this.runHook('stats', []);

    // Parse stats from output
    const stats = {
      sessionsTracked: this.parseStatValue(result, 'Sessions tracked'),
      editsLearned: this.parseStatValue(result, 'Edits learned'),
      routingAccuracy: this.parseStatValue(result, 'Routing accuracy'),
      memorySize: this.parseStatValue(result, 'Memory size')
    };

    return stats;
  }

  /**
   * Pre-command intelligence hook
   */
  async preCommand(command: string[]): Promise<void> {
    if (!this.config.enabled) return;

    await this.runHook('pre-command', command);
  }

  /**
   * Post-command learning hook
   */
  async postCommand(command: string[], exitCode: number): Promise<void> {
    if (!this.config.enabled) return;

    await this.runHook('post-command', [
      ...command,
      '--exit-code', exitCode.toString()
    ]);
  }

  /**
   * Run a hooks command
   */
  private async runHook(command: string, args: string[]): Promise<string> {
    return new Promise((resolve, reject) => {
      const proc = spawn('npx', ['ruvector', 'hooks', command, ...args], {
        stdio: ['ignore', 'pipe', 'pipe']
      });

      let stdout = '';
      let stderr = '';

      proc.stdout?.on('data', (data) => {
        stdout += data.toString();
      });

      proc.stderr?.on('data', (data) => {
        stderr += data.toString();
      });

      proc.on('close', (code) => {
        if (code !== 0) {
          console.warn(`Hooks command '${command}' failed:`, stderr);
          // Don't reject - hooks failures shouldn't break main workflow
          resolve('');
        } else {
          resolve(stdout);
        }
      });

      proc.on('error', (err) => {
        console.warn(`Hooks command '${command}' error:`, err);
        resolve(''); // Graceful degradation
      });
    });
  }

  /**
   * Parse numeric value from stats output
   */
  private parseStatValue(text: string, label: string): number {
    const match = text.match(new RegExp(`${label}:\\s*(\\d+(?:\\.\\d+)?)`));
    return match ? parseFloat(match[1]) : 0;
  }
}

Integration with Agent Executor:

// agentic-flow/src/agents/AgentExecutor.ts (ENHANCED)
import { RuvectorHooks } from '../hooks/RuvectorHooks.js';
import type { AgentTask, AgentResult } from '../types/Agent.js';

export class AgentExecutor {
  private hooks: RuvectorHooks;

  constructor() {
    this.hooks = new RuvectorHooks({
      enabled: true,
      sessionTracking: true,
      memoryEnabled: true,
      routingEnabled: true
    });
  }

  async initialize(): Promise<void> {
    await this.hooks.initialize();
  }

  /**
   * Execute agent task with hooks integration
   */
  async executeTask(task: AgentTask): Promise<AgentResult> {
    // Start session if not already started
    if (!this.currentSessionId) {
      await this.hooks.sessionStart(task.sessionId, {
        taskType: task.type,
        timestamp: Date.now()
      });
      this.currentSessionId = task.sessionId;
    }

    // Get agent routing recommendation from hooks
    const recommendedAgent = await this.hooks.routeTask(task.description, {
      file: task.context?.file
    });

    console.log(`🤖 Hooks recommended agent: ${recommendedAgent}`);

    // Recall relevant context from vector memory
    const context = await this.hooks.recall(task.description, 5);
    if (context.length > 0) {
      console.log(`🧠 Recalled ${context.length} relevant memories`);
    }

    // Execute task
    const result = await this.runAgent(recommendedAgent, task, context);

    // Store successful patterns in memory
    if (result.success) {
      await this.hooks.remember(
        `Task: ${task.description}\nAgent: ${recommendedAgent}\nResult: Success`,
        `swarm/${task.sessionId}`
      );
    }

    return result;
  }

  /**
   * Execute task with file edits
   */
  async executeWithFileEdits(
    task: AgentTask,
    filePath: string
  ): Promise<AgentResult> {
    // Pre-edit intelligence
    await this.hooks.preEdit(filePath);

    const result = await this.executeTask(task);

    // Post-edit learning
    await this.hooks.postEdit(filePath, result.changes);

    return result;
  }

  /**
   * End current session
   */
  async endSession(): Promise<void> {
    if (this.currentSessionId) {
      await this.hooks.sessionEnd(true); // Export metrics
      this.currentSessionId = null;
    }
  }

  /**
   * Get hooks intelligence stats
   */
  async getIntelligenceStats() {
    return await this.hooks.getStats();
  }
}

Usage Example:

// Example: Agent execution with hooks
const executor = new AgentExecutor();
await executor.initialize(); // Initialize hooks

// Execute tasks with intelligence
const result = await executor.executeTask({
  id: 'task-1',
  sessionId: 'session-abc',
  description: 'Implement user authentication',
  type: 'feature',
  context: { file: 'src/auth/index.ts' }
});

// Hooks will:
// - Route to optimal agent (e.g., backend-dev)
// - Recall relevant past solutions
// - Learn from the execution
// - Store successful patterns

// Get intelligence metrics
const stats = await executor.getIntelligenceStats();
console.log('Intelligence stats:', stats);
// {
//   sessionsTracked: 42,
//   editsLearned: 156,
//   routingAccuracy: 0.87,
//   memorySize: 1024
// }

// End session and export metrics
await executor.endSession();

4.2 Hooks CLI Commands Reference

Available in ruvector core package (18 commands):

Command Description Use in agentic-flow
hooks init Initialize hooks One-time project setup
hooks session-start Start session Track workflow beginning
hooks session-end End session Export metrics, save state
hooks pre-edit <file> Pre-edit intelligence Before file modifications
hooks post-edit <file> Post-edit learning Learn from code changes
hooks route <task> Route to optimal agent Agent selection
hooks swarm-recommend <type> Multi-agent recommendations Swarm coordination
hooks remember <content> Store in memory Save patterns/context
hooks recall <query> Retrieve from memory Context-aware assistance
hooks suggest-context Suggest relevant context Proactive help
hooks stats Show intelligence stats Monitor learning
hooks pre-command <cmd> Pre-command validation Before executing commands
hooks post-command <cmd> Post-command learning Learn from results
hooks async-agent Async agent operations Background tasks
hooks lsp-diagnostic LSP integration IDE/editor integration
hooks pre-compact Pre-DB compaction Before cleanup
hooks track-notification Track notifications System events

4.3 Migration from claude-flow hooks

OLD (claude-flow@alpha):

npx claude-flow@alpha hooks pre-task --description "task"
npx claude-flow@alpha hooks post-task --task-id "id"
npx claude-flow@alpha hooks session-restore --session-id "id"

NEW (ruvector hooks):

npx ruvector hooks session-start --session-id "session-abc"
npx ruvector hooks route "implement authentication"
npx ruvector hooks pre-edit src/auth/index.ts
# Make changes
npx ruvector hooks post-edit src/auth/index.ts
npx ruvector hooks remember "Authentication pattern: JWT tokens"
npx ruvector hooks session-end --export-metrics

Advantages:

  • ✅ Native vector-backed memory (HNSW)
  • ✅ Intelligent agent routing
  • ✅ Built-in swarm recommendations
  • ✅ Learning from code edits
  • ✅ No separate dependency needed (in ruvector core)
  • ✅ Persistent across sessions

🧪 Testing Strategy

Unit Tests

// tests/orchestration/RuvLLMOrchestrator.test.ts
import { describe, it, expect, beforeEach } from '@jest/globals';
import { RuvLLMOrchestrator } from '../../src/orchestration/RuvLLMOrchestrator.js';

describe('RuvLLMOrchestrator', () => {
  let orchestrator: RuvLLMOrchestrator;

  beforeEach(() => {
    orchestrator = new RuvLLMOrchestrator({
      model: 'claude-sonnet-4-5-20250929',
      reasoningDepth: 3,
      learningRate: 0.01,
      memoryEnabled: true
    });
  });

  it('should execute task with TRM reasoning', async () => {
    const result = await orchestrator.orchestrate({
      id: 'test-1',
      sessionId: 'session-1',
      description: 'Design a caching strategy',
      input: {}
    });

    expect(result.output).toBeDefined();
    expect(result.reasoning?.steps).toBeDefined();
    expect(result.reasoning?.steps?.length).toBeGreaterThan(0);
    expect(result.confidence).toBeGreaterThan(0);
  });

  it('should provide routing recommendations', async () => {
    const routing = await orchestrator.routeAgent(
      'Implement authentication',
      ['backend-dev', 'security-engineer', 'coder']
    );

    expect(routing.agent).toBeDefined();
    expect(routing.confidence).toBeGreaterThan(0);
    expect(routing.alternatives).toHaveLength(2);
  });

  it('should learn from feedback', async () => {
    const result = await orchestrator.orchestrate({
      id: 'test-2',
      sessionId: 'session-1',
      description: 'Write unit tests',
      input: {}
    });

    await orchestrator.feedback(result.taskId, 0.9);

    const metrics = await orchestrator.getMetrics();
    expect(metrics.accuracy).toBeDefined();
  });
});
// tests/routing/CircuitBreakerRouter.test.ts
import { describe, it, expect, beforeEach, vi } from '@jest/globals';
import { CircuitBreakerRouter } from '../../src/routing/CircuitBreakerRouter.js';

describe('CircuitBreakerRouter', () => {
  let router: CircuitBreakerRouter;

  beforeEach(() => {
    router = new CircuitBreakerRouter({
      failureThreshold: 3,
      resetTimeout: 1000,
      fallbackEnabled: true
    });
  });

  it('should route to primary agent', async () => {
    const result = await router.route('Test task', ['agent1', 'agent2']);

    expect(result.agent).toBeDefined();
    expect(result.confidence).toBeGreaterThan(0);
    expect(result.circuitState).toBe('closed');
  });

  it('should open circuit after failures', async () => {
    const executor = vi.fn().mockRejectedValue(new Error('Failure'));

    for (let i = 0; i < 3; i++) {
      try {
        await router.executeWithFallback('Test', ['agent1'], executor);
      } catch {}
    }

    const state = router.getCircuitState('agent1');
    expect(state).toBe('open');
  });

  it('should fallback to alternative agent', async () => {
    let attempt = 0;
    const executor = vi.fn().mockImplementation(() => {
      if (attempt++ === 0) {
        throw new Error('Primary failed');
      }
      return Promise.resolve('Success from fallback');
    });

    const result = await router.executeWithFallback(
      'Test',
      ['agent1', 'agent2'],
      executor
    );

    expect(result).toBe('Success from fallback');
    expect(executor).toHaveBeenCalledTimes(2);
  });

  it('should reset circuit after timeout', async () => {
    const executor = vi.fn().mockRejectedValue(new Error('Failure'));

    // Open circuit
    for (let i = 0; i < 3; i++) {
      try {
        await router.executeWithFallback('Test', ['agent1'], executor);
      } catch {}
    }

    expect(router.getCircuitState('agent1')).toBe('open');

    // Wait for reset timeout
    await new Promise(resolve => setTimeout(resolve, 1100));

    // Should be half-open now
    try {
      await router.executeWithFallback('Test', ['agent1'],
        vi.fn().mockResolvedValue('Success')
      );
    } catch {}

    expect(router.getCircuitState('agent1')).toBe('closed');
  });
});

Integration Tests

// tests/integration/ruvector-ecosystem.test.ts
import { describe, it, expect, beforeAll } from '@jest/globals';
import { RuvLLMOrchestrator } from '../../src/orchestration/RuvLLMOrchestrator.js';
import { CircuitBreakerRouter } from '../../src/routing/CircuitBreakerRouter.js';
import { SemanticRouter } from '../../src/routing/SemanticRouter.js';
import { DAGScheduler } from '../../src/scheduling/DAGScheduler.js';

describe('RuVector Ecosystem Integration', () => {
  let orchestrator: RuvLLMOrchestrator;
  let circuitBreaker: CircuitBreakerRouter;
  let semanticRouter: SemanticRouter;
  let dagScheduler: DAGScheduler;

  beforeAll(async () => {
    orchestrator = new RuvLLMOrchestrator({
      model: 'claude-sonnet-4-5-20250929',
      reasoningDepth: 3
    });

    circuitBreaker = new CircuitBreakerRouter({
      failureThreshold: 5,
      fallbackEnabled: true
    });

    semanticRouter = new SemanticRouter({
      dimension: 384,
      learningEnabled: true
    });

    dagScheduler = new DAGScheduler({
      maxParallelism: 10,
      prioritization: 'hybrid'
    });
  });

  it('should orchestrate complex workflow end-to-end', async () => {
    // 1. Route task to agents
    const routing = await semanticRouter.route('Build REST API');
    expect(routing.primary.agent).toBeDefined();

    // 2. Schedule tasks with dependencies
    const tasks = [
      { id: '1', name: 'Design schema' },
      { id: '2', name: 'Implement endpoints' },
      { id: '3', name: 'Write tests' }
    ];
    const dependencies = [
      { from: '1', to: '2' },
      { from: '2', to: '3' }
    ];

    const schedule = await dagScheduler.schedule(tasks, dependencies);
    expect(schedule.plan.stages.length).toBeGreaterThan(0);

    // 3. Execute with circuit breaker protection
    const result = await circuitBreaker.executeWithFallback(
      'Implement API',
      [routing.primary.agent],
      async (agent) => {
        return await orchestrator.orchestrate({
          id: 'workflow-1',
          sessionId: 'integration-test',
          description: 'Implement REST API',
          input: {}
        });
      }
    );

    expect(result.output).toBeDefined();
    expect(result.reasoning?.steps?.length).toBeGreaterThan(0);
  });

  it('should maintain 99.9% uptime with circuit breaker', async () => {
    const iterations = 1000;
    let successes = 0;

    for (let i = 0; i < iterations; i++) {
      try {
        await circuitBreaker.executeWithFallback(
          'Test task',
          ['agent1', 'agent2', 'agent3'],
          async () => {
            if (Math.random() < 0.1) {
              throw new Error('Random failure');
            }
            return 'Success';
          }
        );
        successes++;
      } catch {}
    }

    const uptime = (successes / iterations) * 100;
    expect(uptime).toBeGreaterThanOrEqual(99.0);
  });
});

📊 Timeline & Milestones

Week 1: Core Orchestration (Days 1-5)

Target: 12 working days (2.5 weeks)

Day 1-2: RuvLLM Integration

  • Install @ruvector/ruvllm@^0.2.3
  • Implement RuvLLMOrchestrator.ts
  • Integrate with ReasoningBank
  • Write unit tests
  • Test TRM reasoning (3-step)
  • Test SONA adaptive learning

Day 3-4: Circuit Breaker Routing

  • Install @ruvector/tiny-dancer@^0.1.15
  • Implement CircuitBreakerRouter.ts
  • Configure circuit breaker thresholds
  • Implement fallback chains
  • Write unit tests
  • Load test for 99.9% uptime

Day 5: Semantic Router + DAG Scheduler

  • Install @ruvector/router@^0.1.25
  • Install @ruvector/rudag@^0.1.0
  • Implement SemanticRouter.ts
  • Implement DAGScheduler.ts
  • Register all 66 agents
  • Test HNSW intent matching

Week 2: Advanced Features & Testing (Days 6-10)

Day 6-7: Neuromorphic Pattern Detection

  • Install spiking-neural@^1.0.1
  • Implement NeuromorphicDetector.ts
  • Train on historical patterns
  • Test real-time detection
  • Measure energy efficiency

Day 8: Synthetic Data Generation

  • Install @ruvector/agentic-synth@^0.1.6 (devDependency)
  • Implement TrainingDataGenerator.ts
  • Generate 1000+ reasoning patterns
  • Generate 500+ workflow scenarios
  • Generate 200+ edge cases
  • Bootstrap ReasoningBank

Day 9: Integration Testing

  • End-to-end workflow tests
  • Circuit breaker stress tests
  • Routing accuracy benchmarks
  • DAG scheduling optimization tests
  • Neuromorphic pattern validation

Day 10: Hooks Integration

  • Implement RuvectorHooks.ts wrapper
  • Initialize hooks with npx ruvector hooks init
  • Integrate hooks with AgentExecutor
  • Test agent routing intelligence
  • Test memory recall/remember
  • Test session tracking
  • Migration guide from claude-flow hooks

Day 11-12: Documentation & Release

  • Update README with new features
  • API documentation for all 6 packages
  • Hooks integration guide
  • Migration guide from v2.0.1-alpha.7
  • Performance benchmarks
  • Publish v2.0.1-alpha.8

✅ Success Criteria

Performance Metrics

Metric Target Measurement
Agent routing latency <10ms p95 latency
Routing accuracy ≥85% Correct agent selection rate
System uptime ≥99.9% With circuit breaker
Task planning quality +40% vs baseline (user rating)
Training data generated ≥1000 patterns ReasoningBank entries
Energy efficiency 10-100x vs traditional neural networks
DAG scheduling overhead <5% vs direct execution

Functional Requirements

  • ✅ RuvLLM orchestrator with TRM reasoning (3+ steps)
  • ✅ SONA adaptive learning (updates every 100 inferences)
  • ✅ Circuit breaker with 99.9% uptime guarantee
  • ✅ Semantic routing for all 66 agents
  • ✅ DAG scheduling with critical path analysis
  • ✅ Neuromorphic pattern detection (16 pattern types)
  • ✅ Synthetic data generation (1000+ training examples)
  • ✅ HNSW memory integration
  • ✅ Hot-reload capability (zero downtime)
  • ✅ Fallback chains (3-level)
  • ✅ RuVector hooks integration (18 intelligent commands)
  • ✅ Vector-backed memory (remember/recall)
  • ✅ Session tracking with metrics export
  • ✅ Intelligent agent routing via hooks

Integration Requirements

  • ✅ Compatible with existing ReasoningBank
  • ✅ Works with agentdb@2.0.0-alpha.2.21 (PostgreSQL backend)
  • ✅ Integrates with all 66 existing agents
  • ✅ Backward compatible with v2.0.1-alpha.7
  • ✅ No breaking API changes
  • ✅ Minimal configuration required

📦 Package.json Updates

{
  "name": "agentic-flow",
  "version": "2.0.1-alpha.8",
  "dependencies": {
    "agentdb": "^2.0.0-alpha.2.21",
    "@ruvector/ruvllm": "^0.2.3",
    "@ruvector/tiny-dancer": "^0.1.15",
    "@ruvector/router": "^0.1.25",
    "@ruvector/rudag": "^0.1.0",
    "spiking-neural": "^1.0.1"
  },
  "devDependencies": {
    "@ruvector/agentic-synth": "^0.1.6"
  },
  "scripts": {
    "generate:training-data": "tsx scripts/generate-training-data.ts",
    "test:ruvector": "jest --testPathPattern=ruvector",
    "test:integration": "jest --testPathPattern=integration",
    "benchmark:routing": "tsx scripts/benchmark-routing.ts"
  }
}

🔗 Dependencies

Requires from agentdb issue:

  • agentdb@2.0.0-alpha.2.21 (PostgreSQL backend)
  • ruvector@0.1.38
  • @ruvector/attention@0.1.3
  • @ruvector/gnn@0.1.22
  • @ruvector/sona@0.1.4

New dependencies:

  • @ruvector/ruvllm@0.2.3
  • @ruvector/tiny-dancer@0.1.15
  • @ruvector/router@0.1.25
  • @ruvector/rudag@0.1.0
  • spiking-neural@1.0.1

Dev dependencies:

  • @ruvector/agentic-synth@0.1.6

🎯 Migration Guide

From v2.0.1-alpha.7

Breaking Changes: None

New Features:

  1. RuvLLM orchestrator (opt-in)
  2. Circuit breaker routing (automatic)
  3. Semantic routing (replaces keyword matching)
  4. DAG scheduling (opt-in)
  5. Neuromorphic pattern detection (opt-in)

Migration Steps:

// OLD: Direct agent execution
const result = await executeAgent('coder', task);

// NEW: RuvLLM orchestration with reasoning
import { RuvLLMOrchestrator } from 'agentic-flow/orchestration';

const orchestrator = new RuvLLMOrchestrator({
  model: 'claude-sonnet-4-5-20250929',
  reasoningDepth: 3
});

const result = await orchestrator.orchestrate({
  id: 'task-1',
  sessionId: 'session-1',
  description: task,
  input: {}
});

// Access reasoning steps
console.log(result.reasoning.steps);
// OLD: Manual routing
const agent = selectAgent(task);

// NEW: Semantic routing
import { SemanticRouter } from 'agentic-flow/routing';

const router = new SemanticRouter();
await router.registerAgents(allAgents);

const routing = await router.route(task);
console.log('Selected:', routing.primary.agent);
console.log('Similarity:', routing.primary.similarity);

📚 References


Issue Created: 2025-12-30
Target Version: v2.0.1-alpha.8
Estimated Completion: 2 weeks
Priority: Critical
Complexity: High

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions