-
Notifications
You must be signed in to change notification settings - Fork 87
Description
GitHub Issue: Agentic-Flow RuVector Ecosystem Integration
Title: [Enhancement] Integrate RuVector Ecosystem - Orchestration Layer (6 packages)
Labels: enhancement, ruvector, orchestration, v2.0.1-alpha.8
Milestone: v2.0.1-alpha.8 - RuVector Orchestration
Assignees: Core development team
Related Issues:
- agentdb RuVector Integration (companion issue)
- #[TBD] Phase 1 PostgreSQL Backend
- #[TBD] ReasoningBank Enhancement
📋 Summary
Integrate 6 RuVector orchestration packages + built-in hooks CLI into agentic-flow@2.0.1-alpha.8 to transform the platform from prototype to enterprise-grade, self-learning AI orchestration system.
Target Version: v2.0.1-alpha.8
Estimated Timeline: 2.5 weeks (12 working days)
Complexity: High
Priority: Critical
Expected Impact
| Metric | Before | After | Improvement |
|---|---|---|---|
| Agent routing latency | 500ms | <10ms | 50x faster |
| Routing accuracy | 70% | 90% | +29% |
| System uptime | 95% | 99.9% | +5.2% |
| Task planning quality | Baseline | +40% | Multi-step reasoning |
| Training data | 0 examples | 1000+ | ∞ |
| Pattern detection | None | Real-time | Neuromorphic AI |
📦 Packages to Integrate
⭐⭐⭐ TIER S+: Transformational
1. @ruvector/ruvllm@0.2.3 - Self-Learning LLM Orchestration
- TRM (Tiny Recursive Models) - Multi-step reasoning
- SONA (Self-Optimizing Neural Architecture) - Adaptive learning
- FastGRNN routing - Hardware-accelerated agent selection
- HNSW memory - Vector-backed context retrieval
2. @ruvector/tiny-dancer@0.1.15 - Production Neural Router
- Circuit breaker pattern - 99.9% uptime
- Uncertainty estimation - Confidence scores
- Hot-reload capability - Zero-downtime updates
- Fallback chains - Graceful degradation
3. @ruvector/agentic-synth@0.1.6 - Synthetic Data Generation (DevDependency)
- DSPy.ts integration - Prompt optimization
- Multi-LLM support - Gemini, OpenRouter, Claude
- RAG dataset generation - Training data for ReasoningBank
- Edge case generation - Comprehensive test coverage
⭐⭐ TIER 1: Critical
4. @ruvector/router@0.1.25 - Semantic Agent Routing
- HNSW intent matching - Vector-based routing
- 66 agent support - All agentic-flow agents
- Sub-10ms latency - Real-time routing
5. @ruvector/rudag@0.1.0 - DAG Task Scheduler
- Critical path analysis - Task prioritization
- Bottleneck detection - Performance optimization
- ML-based attention - Intelligent scheduling
⭐ TIER 2: High Priority
6. spiking-neural@1.0.1 - Neuromorphic Pattern Detection
- LIF neurons - Biological learning
- STDP learning - Spike-timing plasticity
- 10-100x lower energy - Edge deployment ready
- Temporal pattern recognition - Workflow analysis
🔧 Implementation Details
Phase 1: Core Orchestration (Days 1-3)
1.1 RuvLLM Integration
File: agentic-flow/src/orchestration/RuvLLMOrchestrator.ts
import { RuvLLM } from '@ruvector/ruvllm';
import type { AgentTask, AgentResult } from '../types/Agent.js';
import { ReasoningBank } from '../memory/ReasoningBank.js';
export interface RuvLLMConfig {
model: string;
temperature?: number;
maxTokens?: number;
reasoningDepth?: number; // TRM depth (1-5)
learningRate?: number; // SONA learning rate
memoryEnabled?: boolean; // HNSW context retrieval
}
export class RuvLLMOrchestrator {
private ruvllm: RuvLLM;
private reasoningBank: ReasoningBank;
private config: RuvLLMConfig;
constructor(config: RuvLLMConfig) {
this.config = {
temperature: 0.7,
maxTokens: 4096,
reasoningDepth: 3,
learningRate: 0.01,
memoryEnabled: true,
...config
};
this.ruvllm = new RuvLLM({
model: this.config.model,
// TRM configuration (recursive reasoning)
trm: {
enabled: true,
depth: this.config.reasoningDepth,
beamWidth: 3,
pruningThreshold: 0.3
},
// SONA configuration (adaptive learning)
sona: {
enabled: true,
learningRate: this.config.learningRate,
architecture: 'fastgrnn',
adaptationInterval: 100, // Update every 100 inferences
metricWeights: {
accuracy: 0.5,
latency: 0.3,
tokenEfficiency: 0.2
}
},
// FastGRNN routing configuration
routing: {
type: 'fastgrnn',
hiddenSize: 128,
uncertainty: true, // Enable uncertainty estimation
fallback: 'random' // Fallback strategy
},
// HNSW memory configuration
memory: this.config.memoryEnabled ? {
type: 'hnsw',
dimension: 384,
maxConnections: 16,
efConstruction: 200,
efSearch: 100
} : undefined
});
}
/**
* Orchestrate agent task with recursive reasoning and adaptive learning
*/
async orchestrate(task: AgentTask): Promise<AgentResult> {
const startTime = Date.now();
try {
// Retrieve similar patterns from ReasoningBank (if memory enabled)
let context: string[] = [];
if (this.config.memoryEnabled && this.reasoningBank) {
const similarPatterns = await this.reasoningBank.search(task.description, 5);
context = similarPatterns.map(p =>
`Previous success: ${p.task} → ${p.output} (reward: ${p.reward})`
);
}
// Execute with TRM (multi-step reasoning)
const result = await this.ruvllm.complete({
prompt: task.description,
context: context.join('\n'),
// TRM will break this into sub-problems
reasoning: {
steps: this.config.reasoningDepth,
critique: true // Self-critique at each step
},
temperature: this.config.temperature,
maxTokens: this.config.maxTokens
});
const latencyMs = Date.now() - startTime;
// Store reasoning trajectory in ReasoningBank
if (this.reasoningBank) {
await this.reasoningBank.store({
sessionId: task.sessionId,
task: task.description,
input: task.input,
output: result.text,
// TRM reasoning chain
reasoning: result.reasoning?.steps || [],
critique: result.reasoning?.critique,
// Performance metrics
latencyMs,
tokensUsed: result.usage.totalTokens,
// Outcome (to be updated later)
success: true,
reward: 0.0 // Will be updated by feedback
});
}
return {
taskId: task.id,
output: result.text,
reasoning: result.reasoning,
confidence: result.uncertainty?.confidence || 1.0,
metadata: {
latencyMs,
tokensUsed: result.usage.totalTokens,
reasoningDepth: result.reasoning?.steps?.length || 0,
modelVersion: result.model
}
};
} catch (error) {
console.error('RuvLLM orchestration failed:', error);
throw error;
}
}
/**
* Provide feedback to SONA for adaptive learning
*/
async feedback(taskId: string, reward: number): Promise<void> {
await this.ruvllm.learn({
taskId,
reward,
updateWeights: true
});
// Update ReasoningBank pattern
if (this.reasoningBank) {
await this.reasoningBank.updateReward(taskId, reward);
}
}
/**
* Get routing recommendations with uncertainty
*/
async routeAgent(task: string, agents: string[]): Promise<{
agent: string;
confidence: number;
alternatives: Array<{ agent: string; score: number }>;
}> {
const result = await this.ruvllm.route({
task,
options: agents,
returnUncertainty: true,
topK: 3
});
return {
agent: result.selected,
confidence: result.confidence,
alternatives: result.alternatives.map((alt, idx) => ({
agent: alt,
score: result.scores[idx]
}))
};
}
/**
* Get current SONA performance metrics
*/
async getMetrics(): Promise<{
accuracy: number;
avgLatency: number;
tokenEfficiency: number;
adaptationCount: number;
}> {
return await this.ruvllm.getSONAMetrics();
}
}Usage Example:
// agentic-flow/src/agents/AgentExecutor.ts
import { RuvLLMOrchestrator } from '../orchestration/RuvLLMOrchestrator.js';
const orchestrator = new RuvLLMOrchestrator({
model: 'claude-sonnet-4-5-20250929',
reasoningDepth: 3, // 3-step recursive reasoning
learningRate: 0.01, // SONA adaptation rate
memoryEnabled: true // HNSW context retrieval
});
// Execute complex task with multi-step reasoning
const result = await orchestrator.orchestrate({
id: 'task-123',
sessionId: 'session-abc',
description: 'Design a scalable microservices architecture for e-commerce',
input: { requirements: '...' }
});
console.log('Result:', result.output);
console.log('Reasoning steps:', result.reasoning.steps);
console.log('Confidence:', result.confidence);
// Provide feedback for adaptive learning
await orchestrator.feedback('task-123', 0.95); // 95% success
// Get routing recommendations
const routing = await orchestrator.routeAgent(
'Implement user authentication',
['backend-dev', 'security-engineer', 'api-architect']
);
console.log('Recommended agent:', routing.agent);
console.log('Confidence:', routing.confidence);
console.log('Alternatives:', routing.alternatives);1.2 Circuit Breaker Routing
File: agentic-flow/src/routing/CircuitBreakerRouter.ts
import { TinyDancer } from '@ruvector/tiny-dancer';
import type { AgentRoute, RouteResult } from '../types/Router.js';
export interface CircuitBreakerConfig {
failureThreshold: number; // Failures before opening (default: 5)
resetTimeout: number; // ms before attempting reset (default: 30000)
monitoringWindow: number; // ms to track failures (default: 60000)
fallbackEnabled: boolean; // Enable fallback chain
hotReload: boolean; // Enable hot-reload
}
export class CircuitBreakerRouter {
private router: TinyDancer;
private config: CircuitBreakerConfig;
private metrics: Map<string, {
failures: number;
successes: number;
lastFailure: number;
state: 'closed' | 'open' | 'half-open';
}>;
constructor(config: Partial<CircuitBreakerConfig> = {}) {
this.config = {
failureThreshold: 5,
resetTimeout: 30000,
monitoringWindow: 60000,
fallbackEnabled: true,
hotReload: true,
...config
};
this.router = new TinyDancer({
// FastGRNN neural routing
routing: {
type: 'fastgrnn',
hiddenSize: 128,
learningRate: 0.01
},
// Circuit breaker configuration
circuitBreaker: {
enabled: true,
failureThreshold: this.config.failureThreshold,
resetTimeout: this.config.resetTimeout,
monitoringWindow: this.config.monitoringWindow
},
// Uncertainty estimation
uncertainty: {
enabled: true,
method: 'dropout', // Monte Carlo dropout
samples: 10
},
// Fallback chain
fallback: this.config.fallbackEnabled ? {
enabled: true,
strategy: 'confidence', // Fallback to next highest confidence
maxAttempts: 3
} : undefined,
// Hot-reload capability
hotReload: this.config.hotReload
});
this.metrics = new Map();
}
/**
* Route task to agent with circuit breaker protection
*/
async route(task: string, agents: string[]): Promise<RouteResult> {
// Filter out agents with open circuits
const availableAgents = agents.filter(agent => {
const state = this.getCircuitState(agent);
return state !== 'open';
});
if (availableAgents.length === 0) {
throw new Error('All agents have open circuits - system degraded');
}
try {
// Neural routing with uncertainty
const result = await this.router.route({
task,
agents: availableAgents,
returnUncertainty: true,
topK: this.config.fallbackEnabled ? 3 : 1
});
// Record success
this.recordSuccess(result.selected);
return {
agent: result.selected,
confidence: result.confidence,
uncertainty: result.uncertainty,
fallbacks: result.alternatives || [],
circuitState: this.getCircuitState(result.selected)
};
} catch (error) {
console.error('Routing failed:', error);
// Record failure
if (availableAgents.length > 0) {
this.recordFailure(availableAgents[0]);
}
throw error;
}
}
/**
* Execute task with circuit breaker and fallback
*/
async executeWithFallback<T>(
task: string,
agents: string[],
executor: (agent: string) => Promise<T>
): Promise<T> {
const routing = await this.route(task, agents);
// Try primary agent
try {
const result = await this.executeWithCircuitBreaker(
routing.agent,
() => executor(routing.agent)
);
return result;
} catch (primaryError) {
console.warn(`Primary agent ${routing.agent} failed:`, primaryError);
// Try fallbacks
if (this.config.fallbackEnabled && routing.fallbacks.length > 0) {
for (const fallback of routing.fallbacks) {
const circuitState = this.getCircuitState(fallback);
if (circuitState === 'open') {
console.warn(`Fallback ${fallback} circuit is open, skipping`);
continue;
}
try {
console.log(`Attempting fallback: ${fallback}`);
const result = await this.executeWithCircuitBreaker(
fallback,
() => executor(fallback)
);
return result;
} catch (fallbackError) {
console.warn(`Fallback ${fallback} failed:`, fallbackError);
continue;
}
}
}
throw new Error(`All agents failed including fallbacks`);
}
}
/**
* Execute with circuit breaker protection
*/
private async executeWithCircuitBreaker<T>(
agent: string,
executor: () => Promise<T>
): Promise<T> {
const state = this.getCircuitState(agent);
if (state === 'open') {
const metrics = this.metrics.get(agent)!;
const timeSinceLastFailure = Date.now() - metrics.lastFailure;
if (timeSinceLastFailure >= this.config.resetTimeout) {
// Attempt reset (half-open state)
metrics.state = 'half-open';
console.log(`Circuit for ${agent} entering half-open state`);
} else {
throw new Error(`Circuit breaker open for ${agent}`);
}
}
try {
const result = await executor();
this.recordSuccess(agent);
return result;
} catch (error) {
this.recordFailure(agent);
throw error;
}
}
/**
* Record successful execution
*/
private recordSuccess(agent: string): void {
const metrics = this.metrics.get(agent) || {
failures: 0,
successes: 0,
lastFailure: 0,
state: 'closed'
};
metrics.successes++;
// Reset circuit if in half-open state
if (metrics.state === 'half-open') {
metrics.state = 'closed';
metrics.failures = 0;
console.log(`Circuit for ${agent} reset to closed`);
}
this.metrics.set(agent, metrics);
}
/**
* Record failed execution
*/
private recordFailure(agent: string): void {
const metrics = this.metrics.get(agent) || {
failures: 0,
successes: 0,
lastFailure: 0,
state: 'closed'
};
metrics.failures++;
metrics.lastFailure = Date.now();
// Open circuit if threshold exceeded
if (metrics.failures >= this.config.failureThreshold) {
metrics.state = 'open';
console.warn(`Circuit breaker opened for ${agent} (${metrics.failures} failures)`);
}
this.metrics.set(agent, metrics);
}
/**
* Get circuit state for agent
*/
getCircuitState(agent: string): 'closed' | 'open' | 'half-open' {
return this.metrics.get(agent)?.state || 'closed';
}
/**
* Get metrics for all agents
*/
getMetrics(): Record<string, {
failures: number;
successes: number;
uptime: number;
state: string;
}> {
const result: Record<string, any> = {};
for (const [agent, metrics] of this.metrics.entries()) {
const total = metrics.failures + metrics.successes;
result[agent] = {
failures: metrics.failures,
successes: metrics.successes,
uptime: total > 0 ? (metrics.successes / total) * 100 : 100,
state: metrics.state
};
}
return result;
}
/**
* Hot-reload routing model without downtime
*/
async updateModel(modelPath: string): Promise<void> {
if (!this.config.hotReload) {
throw new Error('Hot-reload is disabled');
}
await this.router.loadModel(modelPath);
console.log('Routing model updated successfully');
}
/**
* Reset circuit for specific agent
*/
resetCircuit(agent: string): void {
const metrics = this.metrics.get(agent);
if (metrics) {
metrics.state = 'closed';
metrics.failures = 0;
console.log(`Circuit for ${agent} manually reset`);
}
}
/**
* Reset all circuits
*/
resetAllCircuits(): void {
for (const [agent, metrics] of this.metrics.entries()) {
metrics.state = 'closed';
metrics.failures = 0;
}
console.log('All circuits reset');
}
}Usage Example:
// agentic-flow/src/agents/SwarmExecutor.ts
import { CircuitBreakerRouter } from '../routing/CircuitBreakerRouter.js';
const router = new CircuitBreakerRouter({
failureThreshold: 5, // Open after 5 failures
resetTimeout: 30000, // Try reset after 30s
fallbackEnabled: true, // Enable fallback chain
hotReload: true // Enable hot-reload
});
// Execute task with circuit breaker protection
const result = await router.executeWithFallback(
'Implement REST API',
['backend-dev', 'api-architect', 'coder'],
async (agent: string) => {
// Execute agent task
return await executeAgent(agent, task);
}
);
// Check circuit states
const metrics = router.getMetrics();
console.log('Agent uptime:', metrics);
// Hot-reload updated routing model
await router.updateModel('./models/router-v2.onnx');Phase 2: Intelligent Routing (Days 4-6)
2.1 Semantic Agent Router
File: agentic-flow/src/routing/SemanticRouter.ts
import { SemanticRouter as RuvectorRouter } from '@ruvector/router';
import type { Agent, RoutingResult } from '../types/Agent.js';
export interface SemanticRouterConfig {
dimension: number; // Embedding dimension (384 for sentence-transformers)
threshold: number; // Minimum similarity threshold (0-1)
topK: number; // Return top K agents
cacheEnabled: boolean; // Cache routing decisions
learningEnabled: boolean; // Learn from feedback
}
export class SemanticRouter {
private router: RuvectorRouter;
private config: SemanticRouterConfig;
private agentRegistry: Map<string, Agent>;
constructor(config: Partial<SemanticRouterConfig> = {}) {
this.config = {
dimension: 384,
threshold: 0.3,
topK: 3,
cacheEnabled: true,
learningEnabled: true,
...config
};
this.router = new RuvectorRouter({
// HNSW index configuration
index: {
type: 'hnsw',
dimension: this.config.dimension,
metric: 'cosine',
maxConnections: 16,
efConstruction: 200,
efSearch: 100
},
// Intent matching configuration
matching: {
threshold: this.config.threshold,
topK: this.config.topK,
fuzzy: true // Enable fuzzy matching
},
// Cache configuration
cache: this.config.cacheEnabled ? {
enabled: true,
maxSize: 1000,
ttl: 3600000 // 1 hour
} : undefined,
// Learning configuration
learning: this.config.learningEnabled ? {
enabled: true,
updateOnFeedback: true
} : undefined
});
this.agentRegistry = new Map();
}
/**
* Register agents with their capabilities
*/
async registerAgents(agents: Agent[]): Promise<void> {
for (const agent of agents) {
// Store in registry
this.agentRegistry.set(agent.name, agent);
// Add to semantic router
await this.router.addRoute({
id: agent.name,
name: agent.displayName || agent.name,
// Agent capabilities as searchable text
description: agent.description,
keywords: agent.keywords || [],
examples: agent.examples || [],
// Metadata
metadata: {
category: agent.category,
priority: agent.priority || 'medium',
capabilities: agent.capabilities || []
}
});
}
console.log(`Registered ${agents.length} agents in semantic router`);
}
/**
* Route task to best-matching agents
*/
async route(task: string): Promise<RoutingResult> {
const startTime = Date.now();
// Search for matching agents
const matches = await this.router.search({
query: task,
topK: this.config.topK,
threshold: this.config.threshold
});
const latencyMs = Date.now() - startTime;
if (matches.length === 0) {
throw new Error(`No agents found matching task: ${task}`);
}
return {
primary: {
agent: matches[0].id,
similarity: matches[0].score,
metadata: matches[0].metadata
},
alternatives: matches.slice(1).map(m => ({
agent: m.id,
similarity: m.score,
metadata: m.metadata
})),
latencyMs,
cached: matches[0].cached || false
};
}
/**
* Provide feedback to improve routing
*/
async feedback(taskId: string, agent: string, success: boolean): Promise<void> {
if (!this.config.learningEnabled) {
return;
}
await this.router.learn({
taskId,
routeId: agent,
reward: success ? 1.0 : 0.0
});
}
/**
* Get routing statistics
*/
async getStats(): Promise<{
totalAgents: number;
totalRoutes: number;
cacheHitRate: number;
avgLatency: number;
}> {
return await this.router.getStats();
}
/**
* Clear routing cache
*/
clearCache(): void {
this.router.clearCache();
}
}Integration with Agent Registry:
// agentic-flow/src/registry/AgentRegistry.ts (ENHANCED)
import { SemanticRouter } from '../routing/SemanticRouter.js';
export class AgentRegistry {
private router: SemanticRouter;
async initialize(): Promise<void> {
// Load all 66 agents
const agents = await this.loadAgents();
// Register with semantic router
this.router = new SemanticRouter({
dimension: 384,
threshold: 0.3,
topK: 3,
learningEnabled: true
});
await this.router.registerAgents(agents);
}
async routeTask(task: string): Promise<string> {
const result = await this.router.route(task);
return result.primary.agent;
}
}2.2 DAG Task Scheduler
File: agentic-flow/src/scheduling/DAGScheduler.ts
import { DAGScheduler as RuDAG } from '@ruvector/rudag';
import type { Task, TaskDependency, ScheduleResult } from '../types/Scheduler.js';
export interface DAGSchedulerConfig {
maxParallelism: number; // Max parallel tasks
prioritization: 'critical-path' | 'attention' | 'hybrid';
bottleneckDetection: boolean;
dynamicReordering: boolean;
}
export class DAGScheduler {
private scheduler: RuDAG;
private config: DAGSchedulerConfig;
constructor(config: Partial<DAGSchedulerConfig> = {}) {
this.config = {
maxParallelism: 10,
prioritization: 'hybrid',
bottleneckDetection: true,
dynamicReordering: true,
...config
};
this.scheduler = new RuDAG({
// Parallelism configuration
parallelism: {
max: this.config.maxParallelism,
adaptive: true // Adjust based on resource availability
},
// Prioritization strategy
prioritization: {
method: this.config.prioritization,
// Critical path analysis
criticalPath: {
enabled: true,
considerLatency: true
},
// ML attention-based prioritization
attention: this.config.prioritization !== 'critical-path' ? {
enabled: true,
model: 'transformer',
hiddenSize: 128
} : undefined
},
// Bottleneck detection
bottleneck: this.config.bottleneckDetection ? {
enabled: true,
threshold: 0.8, // Alert if task blocks >80% of graph
autoOptimize: true
} : undefined,
// Dynamic reordering
reordering: this.config.dynamicReordering ? {
enabled: true,
interval: 1000, // Re-optimize every 1s
costThreshold: 0.2 // Reorder if >20% improvement
} : undefined
});
}
/**
* Schedule tasks with dependency resolution
*/
async schedule(tasks: Task[], dependencies: TaskDependency[]): Promise<ScheduleResult> {
const startTime = Date.now();
// Build DAG
const dag = await this.scheduler.build({
nodes: tasks.map(t => ({
id: t.id,
name: t.name,
estimatedDuration: t.estimatedDuration || 1000,
priority: t.priority || 'medium',
metadata: t.metadata
})),
edges: dependencies.map(d => ({
from: d.from,
to: d.to,
type: d.type || 'requires'
}))
});
// Analyze critical path
const criticalPath = await this.scheduler.findCriticalPath(dag);
// Detect bottlenecks
const bottlenecks = this.config.bottleneckDetection
? await this.scheduler.detectBottlenecks(dag)
: [];
// Generate execution plan
const plan = await this.scheduler.optimize(dag);
const latencyMs = Date.now() - startTime;
return {
plan: {
stages: plan.stages.map(stage => ({
id: stage.id,
tasks: stage.taskIds,
parallelism: stage.parallelism
})),
estimatedDuration: plan.estimatedDuration,
parallelismUtilization: plan.parallelismUtilization
},
analysis: {
criticalPath: {
tasks: criticalPath.taskIds,
duration: criticalPath.totalDuration
},
bottlenecks: bottlenecks.map(b => ({
taskId: b.taskId,
blockingPercentage: b.blockingPercentage,
recommendation: b.recommendation
}))
},
latencyMs
};
}
/**
* Execute DAG with dynamic monitoring
*/
async execute<T>(
schedule: ScheduleResult,
executor: (taskId: string) => Promise<T>
): Promise<Map<string, T>> {
const results = new Map<string, T>();
for (const stage of schedule.plan.stages) {
// Execute stage tasks in parallel
const stagePromises = stage.tasks.map(async (taskId) => {
const result = await executor(taskId);
results.set(taskId, result);
// Report progress for dynamic reordering
if (this.config.dynamicReordering) {
await this.scheduler.reportProgress(taskId, 'completed');
}
});
await Promise.all(stagePromises);
}
return results;
}
/**
* Get scheduling metrics
*/
async getMetrics(): Promise<{
avgSchedulingTime: number;
avgParallelism: number;
bottleneckRate: number;
reorderingCount: number;
}> {
return await this.scheduler.getMetrics();
}
}Usage Example:
// agentic-flow/src/workflows/WorkflowExecutor.ts
import { DAGScheduler } from '../scheduling/DAGScheduler.js';
const scheduler = new DAGScheduler({
maxParallelism: 10,
prioritization: 'hybrid',
bottleneckDetection: true,
dynamicReordering: true
});
// Define workflow tasks
const tasks = [
{ id: '1', name: 'Fetch data', estimatedDuration: 2000 },
{ id: '2', name: 'Process data', estimatedDuration: 5000 },
{ id: '3', name: 'Generate report', estimatedDuration: 3000 },
{ id: '4', name: 'Send notification', estimatedDuration: 1000 }
];
// Define dependencies
const dependencies = [
{ from: '1', to: '2' }, // Process depends on fetch
{ from: '2', to: '3' }, // Report depends on process
{ from: '3', to: '4' } // Notification depends on report
];
// Schedule
const schedule = await scheduler.schedule(tasks, dependencies);
console.log('Critical path:', schedule.analysis.criticalPath);
console.log('Bottlenecks:', schedule.analysis.bottlenecks);
console.log('Execution plan:', schedule.plan.stages);
// Execute
const results = await scheduler.execute(schedule, async (taskId) => {
return await executeTask(taskId);
});Phase 3: Advanced Features (Days 7-10)
3.1 Neuromorphic Pattern Detection
File: agentic-flow/src/analysis/NeuromorphicDetector.ts
import { SpikingNeuralNetwork } from 'spiking-neural';
import type { WorkflowEvent, Pattern } from '../types/Analysis.js';
export interface NeuromorphicConfig {
inputSize: number; // Number of input neurons
hiddenSize: number; // Hidden layer neurons
outputSize: number; // Output neurons (pattern types)
threshold: number; // LIF threshold voltage
leakRate: number; // Membrane leak rate
stdpEnabled: boolean; // STDP learning
windowSize: number; // Temporal window (ms)
}
export class NeuromorphicDetector {
private snn: SpikingNeuralNetwork;
private config: NeuromorphicConfig;
private eventBuffer: WorkflowEvent[];
constructor(config: Partial<NeuromorphicConfig> = {}) {
this.config = {
inputSize: 64,
hiddenSize: 128,
outputSize: 16, // 16 pattern types
threshold: 1.0,
leakRate: 0.9,
stdpEnabled: true,
windowSize: 1000,
...config
};
this.snn = new SpikingNeuralNetwork({
// Network architecture
layers: [
{
type: 'input',
size: this.config.inputSize,
neuronType: 'poisson' // Poisson spike encoding
},
{
type: 'hidden',
size: this.config.hiddenSize,
neuronType: 'lif', // Leaky Integrate-and-Fire
threshold: this.config.threshold,
leak: this.config.leakRate
},
{
type: 'output',
size: this.config.outputSize,
neuronType: 'lif',
threshold: this.config.threshold,
leak: this.config.leakRate
}
],
// STDP learning configuration
learning: this.config.stdpEnabled ? {
rule: 'stdp',
tauPlus: 20.0, // Pre-before-post window
tauMinus: 20.0, // Post-before-pre window
aPlus: 0.01, // LTP magnitude
aMinus: 0.01, // LTD magnitude
wMax: 1.0 // Max weight
} : undefined,
// SIMD acceleration
simd: true,
// Temporal coding
temporal: {
enabled: true,
windowMs: this.config.windowSize
}
});
this.eventBuffer = [];
}
/**
* Encode workflow event as spike train
*/
private encodeEvent(event: WorkflowEvent): Float32Array {
const encoding = new Float32Array(this.config.inputSize);
// Encode event type (first 16 neurons)
const typeIndex = this.getEventTypeIndex(event.type);
encoding[typeIndex] = 1.0;
// Encode timing (next 16 neurons) - temporal pattern
const timingBin = Math.floor((event.timestamp % this.config.windowSize) / (this.config.windowSize / 16));
encoding[16 + timingBin] = 1.0;
// Encode agent (next 16 neurons)
const agentHash = this.hashString(event.agent) % 16;
encoding[32 + agentHash] = 1.0;
// Encode magnitude (last 16 neurons) - rate coding
const magnitude = Math.min(event.magnitude || 1.0, 1.0);
for (let i = 0; i < 16; i++) {
if (Math.random() < magnitude) {
encoding[48 + i] = 1.0;
}
}
return encoding;
}
/**
* Process workflow event and detect patterns
*/
async processEvent(event: WorkflowEvent): Promise<Pattern[]> {
// Add to buffer
this.eventBuffer.push(event);
// Keep only events within temporal window
const cutoff = Date.now() - this.config.windowSize;
this.eventBuffer = this.eventBuffer.filter(e => e.timestamp >= cutoff);
// Encode event as spike train
const spikes = this.encodeEvent(event);
// Forward pass through SNN
const output = await this.snn.forward(spikes);
// Decode patterns from output spikes
const patterns: Pattern[] = [];
for (let i = 0; i < this.config.outputSize; i++) {
if (output[i] > 0.5) { // Threshold for pattern detection
patterns.push({
type: this.getPatternType(i),
confidence: output[i],
timestamp: event.timestamp,
events: this.eventBuffer.slice(-5) // Last 5 events
});
}
}
return patterns;
}
/**
* Train on labeled workflow sequences
*/
async train(sequences: Array<{
events: WorkflowEvent[];
pattern: string;
}>): Promise<void> {
for (const sequence of sequences) {
const target = new Float32Array(this.config.outputSize);
const patternIndex = this.getPatternTypeIndex(sequence.pattern);
target[patternIndex] = 1.0;
// Encode sequence as temporal spike train
for (const event of sequence.events) {
const spikes = this.encodeEvent(event);
await this.snn.forward(spikes);
}
// STDP learning (automatic if enabled)
if (this.config.stdpEnabled) {
await this.snn.backward(target);
}
}
}
/**
* Get detected pattern types
*/
private getPatternType(index: number): string {
const patterns = [
'sequential-success',
'parallel-bottleneck',
'retry-loop',
'cascading-failure',
'hot-path',
'cold-start',
'load-spike',
'gradual-degradation',
'recovery-pattern',
'circular-dependency',
'race-condition',
'resource-contention',
'temporal-clustering',
'periodic-burst',
'anomaly',
'normal'
];
return patterns[index] || 'unknown';
}
private getPatternTypeIndex(pattern: string): number {
const patterns = [
'sequential-success', 'parallel-bottleneck', 'retry-loop',
'cascading-failure', 'hot-path', 'cold-start', 'load-spike',
'gradual-degradation', 'recovery-pattern', 'circular-dependency',
'race-condition', 'resource-contention', 'temporal-clustering',
'periodic-burst', 'anomaly', 'normal'
];
return patterns.indexOf(pattern);
}
private getEventTypeIndex(type: string): number {
const types = [
'task-start', 'task-end', 'task-fail', 'agent-spawn',
'agent-exit', 'memory-store', 'memory-retrieve', 'route-change',
'circuit-open', 'circuit-close', 'swarm-init', 'swarm-complete',
'error', 'warning', 'info', 'debug'
];
return types.indexOf(type) % 16;
}
private hashString(str: string): number {
let hash = 0;
for (let i = 0; i < str.length; i++) {
hash = ((hash << 5) - hash) + str.charCodeAt(i);
hash |= 0;
}
return Math.abs(hash);
}
/**
* Get energy consumption (10-100x lower than traditional)
*/
getEnergyMetrics(): {
totalSpikes: number;
avgSpikeRate: number;
estimatedEnergyMicrojoules: number;
} {
return this.snn.getEnergyMetrics();
}
}Usage Example:
// agentic-flow/src/monitoring/WorkflowMonitor.ts
import { NeuromorphicDetector } from '../analysis/NeuromorphicDetector.js';
const detector = new NeuromorphicDetector({
inputSize: 64,
hiddenSize: 128,
outputSize: 16,
stdpEnabled: true,
windowSize: 1000
});
// Train on historical patterns
await detector.train([
{
events: [/* sequential success events */],
pattern: 'sequential-success'
},
{
events: [/* bottleneck events */],
pattern: 'parallel-bottleneck'
}
]);
// Real-time pattern detection
workflow.on('event', async (event) => {
const patterns = await detector.processEvent(event);
for (const pattern of patterns) {
if (pattern.type === 'cascading-failure') {
console.warn('Cascading failure detected!', pattern);
await circuitBreaker.openAll();
} else if (pattern.type === 'parallel-bottleneck') {
console.log('Bottleneck detected, reordering DAG');
await dagScheduler.reoptimize();
}
}
});
// Monitor energy efficiency
const energy = detector.getEnergyMetrics();
console.log('Energy consumption:', energy.estimatedEnergyMicrojoules, 'μJ');
console.log('Spike rate:', energy.avgSpikeRate, 'Hz');3.2 Synthetic Data Generation (DevDependency)
File: agentic-flow/scripts/generate-training-data.ts
import { AgenticSynth } from '@ruvector/agentic-synth';
import { ReasoningBank } from '../src/memory/ReasoningBank.js';
export interface SynthConfig {
provider: 'gemini' | 'openrouter' | 'anthropic';
model: string;
numExamples: number;
domains: string[];
}
export class TrainingDataGenerator {
private synth: AgenticSynth;
private reasoningBank: ReasoningBank;
constructor(config: SynthConfig) {
this.synth = new AgenticSynth({
provider: config.provider,
model: config.model,
// DSPy.ts configuration (prompt optimization)
dspy: {
enabled: true,
optimization: 'mipro', // Multi-Iteration Prompt Optimization
metricName: 'exact_match',
maxIterations: 50
}
});
}
/**
* Generate RAG training patterns for ReasoningBank
*/
async generateReasoningPatterns(numExamples: number = 1000): Promise<void> {
console.log(`Generating ${numExamples} reasoning patterns...`);
const patterns = await this.synth.generateRAG({
numExamples,
// Task types
tasks: [
'code-generation',
'debugging',
'architecture-design',
'test-generation',
'refactoring',
'documentation',
'optimization',
'security-analysis'
],
// Difficulty levels
difficulty: ['easy', 'medium', 'hard', 'expert'],
// Output format
schema: {
task: 'string',
input: 'string',
reasoning: 'array[string]',
output: 'string',
success: 'boolean',
reward: 'number (0-1)'
}
});
// Store in ReasoningBank
for (const pattern of patterns) {
await this.reasoningBank.store({
sessionId: `synthetic-${Date.now()}`,
task: pattern.task,
input: pattern.input,
reasoning: pattern.reasoning,
output: pattern.output,
success: pattern.success,
reward: pattern.reward,
latencyMs: 0,
tokensUsed: 0
});
}
console.log(`Stored ${patterns.length} patterns in ReasoningBank`);
}
/**
* Generate edge case test scenarios
*/
async generateEdgeCases(feature: string, numExamples: number = 100): Promise<any[]> {
return await this.synth.generateEdgeCases({
feature,
numExamples,
categories: [
'null-inputs',
'boundary-values',
'type-mismatches',
'race-conditions',
'resource-exhaustion',
'malformed-data',
'concurrent-access',
'timeout-scenarios'
]
});
}
/**
* Generate agentic workflow datasets
*/
async generateWorkflows(numExamples: number = 500): Promise<void> {
const workflows = await this.synth.generateWorkflows({
numExamples,
// Workflow patterns
patterns: [
'sequential',
'parallel',
'hierarchical',
'mesh',
'pipeline',
'fan-out-fan-in'
],
// Agent types (66 available)
agents: [
'coder', 'reviewer', 'tester', 'planner',
'backend-dev', 'mobile-dev', 'ml-developer',
'cicd-engineer', 'api-docs', 'system-architect'
],
// Complexity levels
complexity: {
minAgents: 2,
maxAgents: 10,
minSteps: 3,
maxSteps: 20
}
});
console.log(`Generated ${workflows.length} workflow scenarios`);
return workflows;
}
/**
* Generate time-series event streams
*/
async generateEventStreams(numStreams: number = 100): Promise<void> {
const streams = await this.synth.generateTimeSeries({
numStreams,
duration: 3600000, // 1 hour per stream
// Event types
events: [
'task-start',
'task-end',
'task-fail',
'agent-spawn',
'agent-exit',
'memory-store',
'circuit-open',
'circuit-close'
],
// Temporal patterns
patterns: [
'periodic',
'bursty',
'gradual-increase',
'spike-and-recovery',
'cascading-failure'
]
});
console.log(`Generated ${streams.length} event streams`);
return streams;
}
}Usage Script:
# scripts/bootstrap-training-data.sh
#!/bin/bash
# Generate 1000 reasoning patterns
npx tsx scripts/generate-training-data.ts --type reasoning --count 1000
# Generate 500 workflow scenarios
npx tsx scripts/generate-training-data.ts --type workflows --count 500
# Generate 200 edge cases per feature
npx tsx scripts/generate-training-data.ts --type edge-cases --feature routing --count 200
npx tsx scripts/generate-training-data.ts --type edge-cases --feature circuit-breaker --count 200
# Generate 100 event streams
npx tsx scripts/generate-training-data.ts --type events --count 100
echo "✅ Training data generation complete"Phase 4: Intelligence Hooks Integration (Days 11-12)
4.1 RuVector Hooks System
Overview: The ruvector package includes a built-in hooks CLI with 18 intelligent commands for self-learning workflow automation. This provides the intelligence layer that makes agentic-flow truly adaptive.
File: agentic-flow/src/hooks/RuvectorHooks.ts
import { spawn } from 'child_process';
import type { AgentTask, AgentResult } from '../types/Agent.js';
export interface HooksConfig {
enabled: boolean;
sessionTracking: boolean;
memoryEnabled: boolean;
routingEnabled: boolean;
}
export class RuvectorHooks {
private config: HooksConfig;
private sessionId: string | null = null;
constructor(config: Partial<HooksConfig> = {}) {
this.config = {
enabled: true,
sessionTracking: true,
memoryEnabled: true,
routingEnabled: true,
...config
};
}
/**
* Initialize hooks in the project
*/
async initialize(): Promise<void> {
if (!this.config.enabled) return;
await this.runHook('init', []);
console.log('✅ RuVector hooks initialized');
}
/**
* Start a new session
*/
async sessionStart(sessionId: string, metadata?: Record<string, any>): Promise<void> {
if (!this.config.sessionTracking) return;
this.sessionId = sessionId;
const args = ['--session-id', sessionId];
if (metadata) {
args.push('--metadata', JSON.stringify(metadata));
}
await this.runHook('session-start', args);
console.log(`🚀 Session started: ${sessionId}`);
}
/**
* End current session and export metrics
*/
async sessionEnd(exportMetrics: boolean = true): Promise<void> {
if (!this.config.sessionTracking || !this.sessionId) return;
const args = exportMetrics ? ['--export-metrics'] : [];
await this.runHook('session-end', args);
console.log(`✅ Session ended: ${this.sessionId}`);
this.sessionId = null;
}
/**
* Pre-edit intelligence hook
*/
async preEdit(filePath: string): Promise<void> {
if (!this.config.enabled) return;
await this.runHook('pre-edit', [filePath]);
}
/**
* Post-edit learning hook
*/
async postEdit(filePath: string, changes?: string): Promise<void> {
if (!this.config.enabled) return;
const args = [filePath];
if (changes) {
args.push('--changes', changes);
}
await this.runHook('post-edit', args);
}
/**
* Route task to optimal agent using hooks intelligence
*/
async routeTask(task: string, context?: {
file?: string;
crate?: string;
}): Promise<string> {
if (!this.config.routingEnabled) {
return 'coder'; // Default fallback
}
const args = [task];
if (context?.file) {
args.push('--file', context.file);
}
if (context?.crate) {
args.push('--crate', context.crate);
}
const result = await this.runHook('route', args);
// Parse agent recommendation from output
const match = result.match(/Recommended agent: (\S+)/);
return match?.[1] || 'coder';
}
/**
* Get swarm recommendations for task type
*/
async swarmRecommend(taskType: string): Promise<string[]> {
if (!this.config.enabled) return [];
const result = await this.runHook('swarm-recommend', [taskType]);
// Parse agent recommendations from output
const matches = result.matchAll(/- (\S+)/g);
return Array.from(matches).map(m => m[1]);
}
/**
* Store important context in vector memory
*/
async remember(content: string, namespace?: string): Promise<void> {
if (!this.config.memoryEnabled) return;
const args = [content];
if (namespace) {
args.push('--namespace', namespace);
}
await this.runHook('remember', args);
}
/**
* Recall context from vector memory
*/
async recall(query: string, limit: number = 5): Promise<string[]> {
if (!this.config.memoryEnabled) return [];
const result = await this.runHook('recall', [
query,
'--limit', limit.toString()
]);
// Parse recalled memories from output
const lines = result.split('\n').filter(line => line.trim());
return lines;
}
/**
* Suggest relevant context for current task
*/
async suggestContext(): Promise<string> {
if (!this.config.enabled) return '';
return await this.runHook('suggest-context', []);
}
/**
* Get intelligence statistics
*/
async getStats(): Promise<{
sessionsTracked: number;
editsLearned: number;
routingAccuracy: number;
memorySize: number;
}> {
if (!this.config.enabled) {
return {
sessionsTracked: 0,
editsLearned: 0,
routingAccuracy: 0,
memorySize: 0
};
}
const result = await this.runHook('stats', []);
// Parse stats from output
const stats = {
sessionsTracked: this.parseStatValue(result, 'Sessions tracked'),
editsLearned: this.parseStatValue(result, 'Edits learned'),
routingAccuracy: this.parseStatValue(result, 'Routing accuracy'),
memorySize: this.parseStatValue(result, 'Memory size')
};
return stats;
}
/**
* Pre-command intelligence hook
*/
async preCommand(command: string[]): Promise<void> {
if (!this.config.enabled) return;
await this.runHook('pre-command', command);
}
/**
* Post-command learning hook
*/
async postCommand(command: string[], exitCode: number): Promise<void> {
if (!this.config.enabled) return;
await this.runHook('post-command', [
...command,
'--exit-code', exitCode.toString()
]);
}
/**
* Run a hooks command
*/
private async runHook(command: string, args: string[]): Promise<string> {
return new Promise((resolve, reject) => {
const proc = spawn('npx', ['ruvector', 'hooks', command, ...args], {
stdio: ['ignore', 'pipe', 'pipe']
});
let stdout = '';
let stderr = '';
proc.stdout?.on('data', (data) => {
stdout += data.toString();
});
proc.stderr?.on('data', (data) => {
stderr += data.toString();
});
proc.on('close', (code) => {
if (code !== 0) {
console.warn(`Hooks command '${command}' failed:`, stderr);
// Don't reject - hooks failures shouldn't break main workflow
resolve('');
} else {
resolve(stdout);
}
});
proc.on('error', (err) => {
console.warn(`Hooks command '${command}' error:`, err);
resolve(''); // Graceful degradation
});
});
}
/**
* Parse numeric value from stats output
*/
private parseStatValue(text: string, label: string): number {
const match = text.match(new RegExp(`${label}:\\s*(\\d+(?:\\.\\d+)?)`));
return match ? parseFloat(match[1]) : 0;
}
}Integration with Agent Executor:
// agentic-flow/src/agents/AgentExecutor.ts (ENHANCED)
import { RuvectorHooks } from '../hooks/RuvectorHooks.js';
import type { AgentTask, AgentResult } from '../types/Agent.js';
export class AgentExecutor {
private hooks: RuvectorHooks;
constructor() {
this.hooks = new RuvectorHooks({
enabled: true,
sessionTracking: true,
memoryEnabled: true,
routingEnabled: true
});
}
async initialize(): Promise<void> {
await this.hooks.initialize();
}
/**
* Execute agent task with hooks integration
*/
async executeTask(task: AgentTask): Promise<AgentResult> {
// Start session if not already started
if (!this.currentSessionId) {
await this.hooks.sessionStart(task.sessionId, {
taskType: task.type,
timestamp: Date.now()
});
this.currentSessionId = task.sessionId;
}
// Get agent routing recommendation from hooks
const recommendedAgent = await this.hooks.routeTask(task.description, {
file: task.context?.file
});
console.log(`🤖 Hooks recommended agent: ${recommendedAgent}`);
// Recall relevant context from vector memory
const context = await this.hooks.recall(task.description, 5);
if (context.length > 0) {
console.log(`🧠 Recalled ${context.length} relevant memories`);
}
// Execute task
const result = await this.runAgent(recommendedAgent, task, context);
// Store successful patterns in memory
if (result.success) {
await this.hooks.remember(
`Task: ${task.description}\nAgent: ${recommendedAgent}\nResult: Success`,
`swarm/${task.sessionId}`
);
}
return result;
}
/**
* Execute task with file edits
*/
async executeWithFileEdits(
task: AgentTask,
filePath: string
): Promise<AgentResult> {
// Pre-edit intelligence
await this.hooks.preEdit(filePath);
const result = await this.executeTask(task);
// Post-edit learning
await this.hooks.postEdit(filePath, result.changes);
return result;
}
/**
* End current session
*/
async endSession(): Promise<void> {
if (this.currentSessionId) {
await this.hooks.sessionEnd(true); // Export metrics
this.currentSessionId = null;
}
}
/**
* Get hooks intelligence stats
*/
async getIntelligenceStats() {
return await this.hooks.getStats();
}
}Usage Example:
// Example: Agent execution with hooks
const executor = new AgentExecutor();
await executor.initialize(); // Initialize hooks
// Execute tasks with intelligence
const result = await executor.executeTask({
id: 'task-1',
sessionId: 'session-abc',
description: 'Implement user authentication',
type: 'feature',
context: { file: 'src/auth/index.ts' }
});
// Hooks will:
// - Route to optimal agent (e.g., backend-dev)
// - Recall relevant past solutions
// - Learn from the execution
// - Store successful patterns
// Get intelligence metrics
const stats = await executor.getIntelligenceStats();
console.log('Intelligence stats:', stats);
// {
// sessionsTracked: 42,
// editsLearned: 156,
// routingAccuracy: 0.87,
// memorySize: 1024
// }
// End session and export metrics
await executor.endSession();4.2 Hooks CLI Commands Reference
Available in ruvector core package (18 commands):
| Command | Description | Use in agentic-flow |
|---|---|---|
hooks init |
Initialize hooks | One-time project setup |
hooks session-start |
Start session | Track workflow beginning |
hooks session-end |
End session | Export metrics, save state |
hooks pre-edit <file> |
Pre-edit intelligence | Before file modifications |
hooks post-edit <file> |
Post-edit learning | Learn from code changes |
hooks route <task> |
Route to optimal agent | Agent selection |
hooks swarm-recommend <type> |
Multi-agent recommendations | Swarm coordination |
hooks remember <content> |
Store in memory | Save patterns/context |
hooks recall <query> |
Retrieve from memory | Context-aware assistance |
hooks suggest-context |
Suggest relevant context | Proactive help |
hooks stats |
Show intelligence stats | Monitor learning |
hooks pre-command <cmd> |
Pre-command validation | Before executing commands |
hooks post-command <cmd> |
Post-command learning | Learn from results |
hooks async-agent |
Async agent operations | Background tasks |
hooks lsp-diagnostic |
LSP integration | IDE/editor integration |
hooks pre-compact |
Pre-DB compaction | Before cleanup |
hooks track-notification |
Track notifications | System events |
4.3 Migration from claude-flow hooks
OLD (claude-flow@alpha):
npx claude-flow@alpha hooks pre-task --description "task"
npx claude-flow@alpha hooks post-task --task-id "id"
npx claude-flow@alpha hooks session-restore --session-id "id"NEW (ruvector hooks):
npx ruvector hooks session-start --session-id "session-abc"
npx ruvector hooks route "implement authentication"
npx ruvector hooks pre-edit src/auth/index.ts
# Make changes
npx ruvector hooks post-edit src/auth/index.ts
npx ruvector hooks remember "Authentication pattern: JWT tokens"
npx ruvector hooks session-end --export-metricsAdvantages:
- ✅ Native vector-backed memory (HNSW)
- ✅ Intelligent agent routing
- ✅ Built-in swarm recommendations
- ✅ Learning from code edits
- ✅ No separate dependency needed (in ruvector core)
- ✅ Persistent across sessions
🧪 Testing Strategy
Unit Tests
// tests/orchestration/RuvLLMOrchestrator.test.ts
import { describe, it, expect, beforeEach } from '@jest/globals';
import { RuvLLMOrchestrator } from '../../src/orchestration/RuvLLMOrchestrator.js';
describe('RuvLLMOrchestrator', () => {
let orchestrator: RuvLLMOrchestrator;
beforeEach(() => {
orchestrator = new RuvLLMOrchestrator({
model: 'claude-sonnet-4-5-20250929',
reasoningDepth: 3,
learningRate: 0.01,
memoryEnabled: true
});
});
it('should execute task with TRM reasoning', async () => {
const result = await orchestrator.orchestrate({
id: 'test-1',
sessionId: 'session-1',
description: 'Design a caching strategy',
input: {}
});
expect(result.output).toBeDefined();
expect(result.reasoning?.steps).toBeDefined();
expect(result.reasoning?.steps?.length).toBeGreaterThan(0);
expect(result.confidence).toBeGreaterThan(0);
});
it('should provide routing recommendations', async () => {
const routing = await orchestrator.routeAgent(
'Implement authentication',
['backend-dev', 'security-engineer', 'coder']
);
expect(routing.agent).toBeDefined();
expect(routing.confidence).toBeGreaterThan(0);
expect(routing.alternatives).toHaveLength(2);
});
it('should learn from feedback', async () => {
const result = await orchestrator.orchestrate({
id: 'test-2',
sessionId: 'session-1',
description: 'Write unit tests',
input: {}
});
await orchestrator.feedback(result.taskId, 0.9);
const metrics = await orchestrator.getMetrics();
expect(metrics.accuracy).toBeDefined();
});
});// tests/routing/CircuitBreakerRouter.test.ts
import { describe, it, expect, beforeEach, vi } from '@jest/globals';
import { CircuitBreakerRouter } from '../../src/routing/CircuitBreakerRouter.js';
describe('CircuitBreakerRouter', () => {
let router: CircuitBreakerRouter;
beforeEach(() => {
router = new CircuitBreakerRouter({
failureThreshold: 3,
resetTimeout: 1000,
fallbackEnabled: true
});
});
it('should route to primary agent', async () => {
const result = await router.route('Test task', ['agent1', 'agent2']);
expect(result.agent).toBeDefined();
expect(result.confidence).toBeGreaterThan(0);
expect(result.circuitState).toBe('closed');
});
it('should open circuit after failures', async () => {
const executor = vi.fn().mockRejectedValue(new Error('Failure'));
for (let i = 0; i < 3; i++) {
try {
await router.executeWithFallback('Test', ['agent1'], executor);
} catch {}
}
const state = router.getCircuitState('agent1');
expect(state).toBe('open');
});
it('should fallback to alternative agent', async () => {
let attempt = 0;
const executor = vi.fn().mockImplementation(() => {
if (attempt++ === 0) {
throw new Error('Primary failed');
}
return Promise.resolve('Success from fallback');
});
const result = await router.executeWithFallback(
'Test',
['agent1', 'agent2'],
executor
);
expect(result).toBe('Success from fallback');
expect(executor).toHaveBeenCalledTimes(2);
});
it('should reset circuit after timeout', async () => {
const executor = vi.fn().mockRejectedValue(new Error('Failure'));
// Open circuit
for (let i = 0; i < 3; i++) {
try {
await router.executeWithFallback('Test', ['agent1'], executor);
} catch {}
}
expect(router.getCircuitState('agent1')).toBe('open');
// Wait for reset timeout
await new Promise(resolve => setTimeout(resolve, 1100));
// Should be half-open now
try {
await router.executeWithFallback('Test', ['agent1'],
vi.fn().mockResolvedValue('Success')
);
} catch {}
expect(router.getCircuitState('agent1')).toBe('closed');
});
});Integration Tests
// tests/integration/ruvector-ecosystem.test.ts
import { describe, it, expect, beforeAll } from '@jest/globals';
import { RuvLLMOrchestrator } from '../../src/orchestration/RuvLLMOrchestrator.js';
import { CircuitBreakerRouter } from '../../src/routing/CircuitBreakerRouter.js';
import { SemanticRouter } from '../../src/routing/SemanticRouter.js';
import { DAGScheduler } from '../../src/scheduling/DAGScheduler.js';
describe('RuVector Ecosystem Integration', () => {
let orchestrator: RuvLLMOrchestrator;
let circuitBreaker: CircuitBreakerRouter;
let semanticRouter: SemanticRouter;
let dagScheduler: DAGScheduler;
beforeAll(async () => {
orchestrator = new RuvLLMOrchestrator({
model: 'claude-sonnet-4-5-20250929',
reasoningDepth: 3
});
circuitBreaker = new CircuitBreakerRouter({
failureThreshold: 5,
fallbackEnabled: true
});
semanticRouter = new SemanticRouter({
dimension: 384,
learningEnabled: true
});
dagScheduler = new DAGScheduler({
maxParallelism: 10,
prioritization: 'hybrid'
});
});
it('should orchestrate complex workflow end-to-end', async () => {
// 1. Route task to agents
const routing = await semanticRouter.route('Build REST API');
expect(routing.primary.agent).toBeDefined();
// 2. Schedule tasks with dependencies
const tasks = [
{ id: '1', name: 'Design schema' },
{ id: '2', name: 'Implement endpoints' },
{ id: '3', name: 'Write tests' }
];
const dependencies = [
{ from: '1', to: '2' },
{ from: '2', to: '3' }
];
const schedule = await dagScheduler.schedule(tasks, dependencies);
expect(schedule.plan.stages.length).toBeGreaterThan(0);
// 3. Execute with circuit breaker protection
const result = await circuitBreaker.executeWithFallback(
'Implement API',
[routing.primary.agent],
async (agent) => {
return await orchestrator.orchestrate({
id: 'workflow-1',
sessionId: 'integration-test',
description: 'Implement REST API',
input: {}
});
}
);
expect(result.output).toBeDefined();
expect(result.reasoning?.steps?.length).toBeGreaterThan(0);
});
it('should maintain 99.9% uptime with circuit breaker', async () => {
const iterations = 1000;
let successes = 0;
for (let i = 0; i < iterations; i++) {
try {
await circuitBreaker.executeWithFallback(
'Test task',
['agent1', 'agent2', 'agent3'],
async () => {
if (Math.random() < 0.1) {
throw new Error('Random failure');
}
return 'Success';
}
);
successes++;
} catch {}
}
const uptime = (successes / iterations) * 100;
expect(uptime).toBeGreaterThanOrEqual(99.0);
});
});📊 Timeline & Milestones
Week 1: Core Orchestration (Days 1-5)
Target: 12 working days (2.5 weeks)
Day 1-2: RuvLLM Integration
- Install
@ruvector/ruvllm@^0.2.3 - Implement
RuvLLMOrchestrator.ts - Integrate with ReasoningBank
- Write unit tests
- Test TRM reasoning (3-step)
- Test SONA adaptive learning
Day 3-4: Circuit Breaker Routing
- Install
@ruvector/tiny-dancer@^0.1.15 - Implement
CircuitBreakerRouter.ts - Configure circuit breaker thresholds
- Implement fallback chains
- Write unit tests
- Load test for 99.9% uptime
Day 5: Semantic Router + DAG Scheduler
- Install
@ruvector/router@^0.1.25 - Install
@ruvector/rudag@^0.1.0 - Implement
SemanticRouter.ts - Implement
DAGScheduler.ts - Register all 66 agents
- Test HNSW intent matching
Week 2: Advanced Features & Testing (Days 6-10)
Day 6-7: Neuromorphic Pattern Detection
- Install
spiking-neural@^1.0.1 - Implement
NeuromorphicDetector.ts - Train on historical patterns
- Test real-time detection
- Measure energy efficiency
Day 8: Synthetic Data Generation
- Install
@ruvector/agentic-synth@^0.1.6(devDependency) - Implement
TrainingDataGenerator.ts - Generate 1000+ reasoning patterns
- Generate 500+ workflow scenarios
- Generate 200+ edge cases
- Bootstrap ReasoningBank
Day 9: Integration Testing
- End-to-end workflow tests
- Circuit breaker stress tests
- Routing accuracy benchmarks
- DAG scheduling optimization tests
- Neuromorphic pattern validation
Day 10: Hooks Integration
- Implement
RuvectorHooks.tswrapper - Initialize hooks with
npx ruvector hooks init - Integrate hooks with AgentExecutor
- Test agent routing intelligence
- Test memory recall/remember
- Test session tracking
- Migration guide from claude-flow hooks
Day 11-12: Documentation & Release
- Update README with new features
- API documentation for all 6 packages
- Hooks integration guide
- Migration guide from v2.0.1-alpha.7
- Performance benchmarks
- Publish
v2.0.1-alpha.8
✅ Success Criteria
Performance Metrics
| Metric | Target | Measurement |
|---|---|---|
| Agent routing latency | <10ms | p95 latency |
| Routing accuracy | ≥85% | Correct agent selection rate |
| System uptime | ≥99.9% | With circuit breaker |
| Task planning quality | +40% | vs baseline (user rating) |
| Training data generated | ≥1000 patterns | ReasoningBank entries |
| Energy efficiency | 10-100x | vs traditional neural networks |
| DAG scheduling overhead | <5% | vs direct execution |
Functional Requirements
- ✅ RuvLLM orchestrator with TRM reasoning (3+ steps)
- ✅ SONA adaptive learning (updates every 100 inferences)
- ✅ Circuit breaker with 99.9% uptime guarantee
- ✅ Semantic routing for all 66 agents
- ✅ DAG scheduling with critical path analysis
- ✅ Neuromorphic pattern detection (16 pattern types)
- ✅ Synthetic data generation (1000+ training examples)
- ✅ HNSW memory integration
- ✅ Hot-reload capability (zero downtime)
- ✅ Fallback chains (3-level)
- ✅ RuVector hooks integration (18 intelligent commands)
- ✅ Vector-backed memory (remember/recall)
- ✅ Session tracking with metrics export
- ✅ Intelligent agent routing via hooks
Integration Requirements
- ✅ Compatible with existing ReasoningBank
- ✅ Works with agentdb@2.0.0-alpha.2.21 (PostgreSQL backend)
- ✅ Integrates with all 66 existing agents
- ✅ Backward compatible with v2.0.1-alpha.7
- ✅ No breaking API changes
- ✅ Minimal configuration required
📦 Package.json Updates
{
"name": "agentic-flow",
"version": "2.0.1-alpha.8",
"dependencies": {
"agentdb": "^2.0.0-alpha.2.21",
"@ruvector/ruvllm": "^0.2.3",
"@ruvector/tiny-dancer": "^0.1.15",
"@ruvector/router": "^0.1.25",
"@ruvector/rudag": "^0.1.0",
"spiking-neural": "^1.0.1"
},
"devDependencies": {
"@ruvector/agentic-synth": "^0.1.6"
},
"scripts": {
"generate:training-data": "tsx scripts/generate-training-data.ts",
"test:ruvector": "jest --testPathPattern=ruvector",
"test:integration": "jest --testPathPattern=integration",
"benchmark:routing": "tsx scripts/benchmark-routing.ts"
}
}🔗 Dependencies
Requires from agentdb issue:
- agentdb@2.0.0-alpha.2.21 (PostgreSQL backend)
- ruvector@0.1.38
- @ruvector/attention@0.1.3
- @ruvector/gnn@0.1.22
- @ruvector/sona@0.1.4
New dependencies:
- @ruvector/ruvllm@0.2.3
- @ruvector/tiny-dancer@0.1.15
- @ruvector/router@0.1.25
- @ruvector/rudag@0.1.0
- spiking-neural@1.0.1
Dev dependencies:
- @ruvector/agentic-synth@0.1.6
🎯 Migration Guide
From v2.0.1-alpha.7
Breaking Changes: None
New Features:
- RuvLLM orchestrator (opt-in)
- Circuit breaker routing (automatic)
- Semantic routing (replaces keyword matching)
- DAG scheduling (opt-in)
- Neuromorphic pattern detection (opt-in)
Migration Steps:
// OLD: Direct agent execution
const result = await executeAgent('coder', task);
// NEW: RuvLLM orchestration with reasoning
import { RuvLLMOrchestrator } from 'agentic-flow/orchestration';
const orchestrator = new RuvLLMOrchestrator({
model: 'claude-sonnet-4-5-20250929',
reasoningDepth: 3
});
const result = await orchestrator.orchestrate({
id: 'task-1',
sessionId: 'session-1',
description: task,
input: {}
});
// Access reasoning steps
console.log(result.reasoning.steps);// OLD: Manual routing
const agent = selectAgent(task);
// NEW: Semantic routing
import { SemanticRouter } from 'agentic-flow/routing';
const router = new SemanticRouter();
await router.registerAgents(allAgents);
const routing = await router.route(task);
console.log('Selected:', routing.primary.agent);
console.log('Similarity:', routing.primary.similarity);📚 References
- FINAL_RUVECTOR_ECOSYSTEM_COMPLETE.md
- CRITICAL_NEURAL_PACKAGES_ADDENDUM.md
- PACKAGE_ALLOCATION_STRATEGY.md
- agentdb RuVector Integration Issue
Issue Created: 2025-12-30
Target Version: v2.0.1-alpha.8
Estimated Completion: 2 weeks
Priority: Critical
Complexity: High